Self-assembly is the process by which individual components arrange themselves into an ordered structure by changing the shapes, components, and interactions. It has enabled us to construct an extensive range of geometric forms on many length scales. Nevertheless, the potential of two-dimensional polygonal nanoplates to self-assemble into extended three-dimensional structures with compartments and corridors has remained unexplored. In this paper, we show coarse-grained Monte Carlo simulations demonstrating self-assembly of hexagonal/triangular nanoplates via complementary interactions into faceted, sponge-like "bicontinuous polyhedra" (or infinite polyhedra) whose flat walls partition space into a pair of mutually interpenetrating labyrinths. Two bicontinuous polyhedra can be self-assembled: the regular (or Platonic) Petrie-Coxeter infinite polyhedron (denoted {6,4|4}) and the semi-regular Hart "gyrangle". The latter structure is chiral, with both left- and right-handed versions. We show that the Petrie-Coxeter assembly is constructed from two complementary populations of hexagonal nanoplates. Furthermore, we find that the 3D chiral Hart gyrangle can be assembled from identical achiral triangular nanoplates decorated with regioselective complementary interaction sites. The assembled Petrie-Coxeter and Hart polyhedra are faceted versions of two of the simplest triply periodic minimal surfaces, namely, Schwarz's primitive and Schoen's gyroid surfaces, respectively, offering alternative routes to those bicontinuous nanostructures, which are widespread in synthetic and biological materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448885 | PMC |
http://dx.doi.org/10.1021/acsnano.2c11929 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053, Pau, France.
The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
Despite having several advantages, bicontinuously structured polymeric nanoparticles (BSPNPs) are far less explored in the field of controlled drug delivery owing to the requirement of complex precursor copolymers and the associated multistep synthetic procedures. In this work, we report the synthesis of a redox-sensitive diblock copolymer (P1), which was subsequently utilized to prepare doxorubicin (DOX) containing a pH-labile prodrug (P2). P1 and P2 spontaneously self-assembled in aqueous media above their critical aggregation concentration, forming micellar nanoparticles with rare bicontinuous morphology that promotes loading of both hydrophobic and hydrophilic cargoes in different compartments.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Macromol Rapid Commun
November 2024
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
Surface proton hopping conduction (SPHC) mechanisms is an important proton conduction mechanism in conventional polymer electrolytes, along with the Grotthuss and vehicle mechanisms. Due to the small diffusion coefficient of protons in the SPHC mechanism, few studies have focused on the SPHC mechanism. Recently, it has been found that a dense alignment of SO groups significantly lowers the activation energy in the SPHC mechanism, enabling fast proton conduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!