Purpose Of Review: Smart eyewear is a head-worn wearable device that is evolving as the next phase of ubiquitous wearables. Although their applications in healthcare are being explored, they have the potential to revolutionize teleophthalmology care. This review highlights their applications in ophthalmology care and discusses future scope.
Recent Findings: Smart eyewear equips advanced sensors, optical displays, and processing capabilities in a wearable form factor. Rapid technological developments and the integration of artificial intelligence are expanding their reach from consumer space to healthcare applications. This review systematically presents their applications in treating and managing eye-related conditions. This includes remote assessments, real-time monitoring, telehealth consultations, and the facilitation of personalized interventions. They also serve as low-vision assistive devices to help visually impaired, and can aid physicians with operational and surgical tasks.
Summary: Wearables such as smart eyewear collects rich, continuous, objective, individual-specific data, which is difficult to obtain in a clinical setting. By leveraging sophisticated data processing and artificial intelligence based algorithms, these data can identify at-risk patients, recognize behavioral patterns, and make timely interventions. They promise cost-effective and personalized treatment for vision impairments in an effort to mitigate the global burden of eye-related conditions and aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ICU.0000000000000985 | DOI Listing |
Lymphology
January 2024
Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
Lymphadenopathy is associated with lymph node abnormal size or consistency due to many causes. We employed the deep convolutional neural network ResNet-34 to detect and classify CT images from patients with abdominal lymphadenopathy and healthy controls. We created a single database containing 1400 source CT images for patients with abdominal lymphadenopathy (n = 700) and healthy controls (n = 700).
View Article and Find Full Text PDFPharmaceut Med
January 2025
Pharmaceutical Medicine, Dover Heights, Sydney, NSW, Australia.
Pharmaceutical medicine professionals have to face many ethical problems during the entire life span of new medicines extending from animal studies to broad clinical practice. The primary aim of the general ethical principles governing research conducted in humans is to diminish the physical and psychological burdens of the participants in human drug studies but overlooks many additional social and ethical problems faced by medicine developers. These arise mainly at the interface connecting the profit-oriented pharmaceutical industry and the healthcare-centered medical profession cooperating in medicines development.
View Article and Find Full Text PDFPurpose: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery.
Methods: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws.
Results: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models.
Mol Biol Rep
January 2025
Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.
View Article and Find Full Text PDFBrain Topogr
January 2025
Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain-computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!