This study aims to present a non-orthogonal multiple access (NOMA) security scheme based on constellation camouflage and selective mapping. To improve the security of the system, we use a four-dimensional chaos model to camouflage high-power signals at the transmitter. The constellation diagram of high power is disguised from binary phase-shift keying (BPSK) form to quadrature phase-shift keying (QPSK) form, and after power multiplexing, further camouflaged from 8 points to 16 points. To improve the transmission performance of the designed system as much as possible and not increase the computational complexity, we use the selective mapping method in the process of power multiplexing and use the region decision method for demodulation at the receiving end. The proposed scheme is verified by experiments on a 2-km 7-core optical fiber, and achieves the safety transmission of a power division multiplexing-orthogonal frequency-division multiplexing (PDM-OFDM) signal with a net rate of 97.38 Gb/s without signal damage. The maximum achievable key space of the proposed scheme is 10. Hence, it is a feasible and secure non-orthogonal multiple access-passive optical network scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.493540 | DOI Listing |
Sci Rep
January 2025
Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University Munich, Munich, Germany.
In modern knee arthroplasty, surgeons increasingly aim for individualised implant selection based on data-driven decisions to improve patient satisfaction rates. The identification of an implant design that optimally fits to a patient's native kinematic patterns and functional requirements could provide a basis towards subject-specific phenotyping. The goal of this study was to achieve a first step towards identifying easily accessible and intuitive features that allow for discrimination between implant designs based on kinematic data.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFClin Breast Cancer
December 2024
Hospital Universitario de Bellvitge, Gynecology, Hospitalet de Llobregat, Barcelona, Spain.
Purpose: To validate the Axillary Reverse Mapping (ARM) technique with indocyanine green (ICG), focusing on the detection rate and the procedure's feasibility. The predictive factors for metastatic involvement of ARM nodes are also analyzed to define the target population for ARM indication.
Methods: This prospective, observational, non-randomized study of patients with breast cancer included patients with an indication for axillary lymph node dissection (ALND) performed between June 2021 and June 2023.
Cell Rep
January 2025
Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus.
View Article and Find Full Text PDFRadiol Oncol
January 2025
3School of Economics and Business, University of Ljubljana, Ljubljana, Slovenia.
Background: Breast cancer is one of the most common cancers, increasingly prevalent also among working-age populations. Regardless of age, breast cancer has significant direct and indirect costs on the individuals, families and society. The aim of the research was to provide a comprehensive bibliometric analysis of the financial toxicity of breast cancer, to identify research voids and future research challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!