Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In free-space optical communications and other applications, it is desirable to design optical beams that have reduced or even minimal scintillation. However, the optimization problem for minimizing scintillation is challenging, and few optimal solutions have been found. Here we investigate the general optimization problem of minimizing scintillation and formulate it as a convex optimization problem. An analytical solution is found and demonstrates that a beam that minimizes scintillation is incoherent light (i.e., spatially uncorrelated). Furthermore, numerical solutions show that beams minimizing scintillation give very low intensity at the receiver. To counteract this effect, we study a new convex cost function that balances both scintillation and intensity. We show through numerical experiments that the minimizers of this cost function reduce scintillation while preserving a significantly higher level of intensity at the receiver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.492565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!