Soliton mode locking in high-Q microcavities provides a way to integrate frequency comb systems. Among material platforms, AlGaAs has one of the largest optical nonlinearity coefficients, and is advantageous for low-pump-threshold comb generation. However, AlGaAs also has a very large thermo-optic effect that destabilizes soliton formation, and femtosecond soliton pulse generation has only been possible at cryogenic temperatures. Here, soliton generation in AlGaAs microresonators at room temperature is reported for the first time, to the best of our knowledge. The destabilizing thermo-optic effect is shown to instead provide stability in the high-repetition-rate soliton regime (corresponding to a large, normalized second-order dispersion parameter D/κ). Single soliton and soliton crystal generation with sub-milliwatt optical pump power are demonstrated. The generality of this approach is verified in a high-Q silica microtoroid where manual tuning into the soliton regime is demonstrated. Besides the advantages of large optical nonlinearity, these AlGaAs devices are natural candidates for integration with semiconductor pump lasers. Furthermore, the approach should generalize to any high-Q resonator material platform.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.484552DOI Listing

Publication Analysis

Top Keywords

room temperature
8
soliton
8
optical nonlinearity
8
generation algaas
8
soliton regime
8
algaas
5
algaas soliton
4
soliton microcombs
4
microcombs room
4
temperature soliton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!