Interstitial photodynamic therapy (I-PDT), which utilizes optical fibers to deliver light for photosensitizer excitation and the elimination of penetration depth limitation, is a promising modality in the treatment of deeply seated tumors or thick tumors. Currently, the excitation domain of the optical fiber is extremely limited, restricting PDT performance. Here, we designed and fabricated a biocompatible polymer optical fiber (POF) with a strongly scattering spherical end (SSSE) for I-PDT applications, achieving an increased excitation domain and consequently excellent in vitro and in vivo therapeutical outcomes. The POF, which was drawn using a simple thermal drawing method, was made of polylactic acid, ensuring its superior biocompatibility. The excitation domains of POFs with different ends, including flat, spherical, conical, and strongly scattering spherical ends, were analyzed and compared. The SSSE was achieved by introducing nanopores into a spherical end, and was further optimized to achieve a large excitation domain with an even intensity distribution. The optimized POF enabled outstanding therapeutic performance of I-PDT in in vitro cancer cell ablation and in vivo anticancer therapy. All of its notable optical features, including low transmission/bending loss, superior biocompatibility, and a large excitation domain with an even intensity distribution, endow the POF with great potential for clinical I-PDT applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.497596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!