Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In nature, mosshead sculpins (Clinocottus globiceps) are challenged by fluctuations in temperature and oxygen levels in their environment. However, it is unclear how mosshead sculpins modulate the permeability of their branchial epithelia to water and O in response to temperature or hypoxia stress. Acute decrease in temperature from 13 to 6 C reduced diffusive water flux rate by 22% and ṀO by 51%, whereas acute increase in temperature from 13 to 25 C increased diffusive water flux rate by 217% and ṀO by 140%, yielding overall Q values of 2.08 and 2.47 respectively. Acute reductions in oxygen tension from >95% to 20% or 10% air saturation did not impact diffusive water flux rates, however, ṀO was reduced significantly by 36% and 65% respectively. During 1-h or 3-h recovery periods diffusive water flux rates were depressed while ṀO exhibited overshoots beyond the normoxic control level. Many responses differed from those seen in our parallel earlier study on the tidepool sculpin, a cottid with similar hypoxia tolerance but much smaller gill area that occupies a similar environment. Overall, our data suggest that during temperature stress, diffusive water flux rates and ṀO follow the traditional osmo-respiratory compromise pattern, but during hypoxia and re-oxygenation stress, diffusive water flux rates are decoupled from ṀO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-023-01226-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!