Background: Circular RNAs (circRNAs) have been shown to play roles in regulating sepsis. Sepsis is a major cause of acute kidney injury (AKI). Herein, we aimed to investigate the role and mechanism of circ_0001714 in the progression of sepsis-induced AKI.

Methods: Human HK-2 cells were exposed to lipopolysaccharide (LPS) for functional experiments. Quantitative real-time polymerase chain reaction and western blotting were used for expression analysis. Functional experiments were performed by using MTT assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA). The binding between miR-129-5p and circ_0001714 or TRAF6 (TNF receptor associated factor 6) was validated using dual-luciferase reporter assay.

Results: Circ_0001714 expression was higher in sepsis-AKI patients. HK-2 cells were exposed to LPS to imitate the injury of renal tubular epithelial cells during sepsis-AKI. LPS dose-dependently up-regulated circ_0001714, moreover, circ_0001714 silencing reversed LPS-evoked apoptosis and inflammation in HK-2 cells. Mechanistically, circ_0001714 sequestered miR-129-5p to up-regulate TRAF6 expression, implying the circ_0001714/miR-129-5p/TRAF6 feedback loop. MiR-129-5p was decreased, while TRAF6 was increased in sepsis-AKI patients and LPS-stimulated HK-2 cells. MiR-129-5p re-expression or TRAF6 silencing protected against LPS-induced HK-2 cell apoptosis and inflammation. Additionally, a series of rescue experiments showed that miR-129-5p inhibition reversed the inhibitory action of circ_0001714 knockdown on LPS-induced HK-2 cell injury. Furthermore, TRAF6 overexpression also attenuated the protective effects of miR-129-5p on HK-2 cells under LPS treatment.

Conclusion: Circ_0001714 silencing might alleviate LPS-induced apoptosis and inflammation via targeting miR-129-5p/TRAF6 axis in HK-2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10863-023-09975-6DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
24
apoptosis inflammation
16
circ_0001714
9
circ_0001714 knockdown
8
renal tubular
8
tubular epithelial
8
cells
8
epithelial cells
8
mir-129-5p/traf6 axis
8
acute kidney
8

Similar Publications

Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease globally. Recent research has identified insulin-like growth factor-binding proteins 2 (IGFBP2) and 4 (IGFBP4) as potential biomarkers for DKD. Overactivation of the complement pathway in DKD remains poorly understood.

View Article and Find Full Text PDF

Sufentanil attenuates renal ischemia-reperfusion injury via the lncRNA KCNQ1OT1/miR-211-5p/HMGB1 axis.

Pathol Res Pract

December 2024

Department of Anesthesiology, Nantong Haimen People's Hospital, Nantong 226100, China. Electronic address:

Inflammation is one of the most significant pathological changes in ischemia-reperfusion injury (IRI). Sufentanil has protective effects on IRI by reducing inflammatory responses. This study aimed to investigate the protective effects and possible mechanisms of sufentanil on renal IRI (RIRI).

View Article and Find Full Text PDF

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Renal fibrosis (RF) is a crucial pathological factor in the progression of chronic kidney disease (CKD) to end-stage renal failure, and accurate and noninvasive assays to monitor the progression of renal fibrosis are needed. Circular RNAs (circRNAs) are noncoding RNAs that can be used as diagnostic biomarkers and therapeutic targets for human diseases. In this study, we analysed the expression of hsa_circ_0008925 in human urinary renal tubular cells and investigated its role in renal fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!