The ability to encode and convert heritable information into molecular function is a defining feature of life as we know it. The conversion of information into molecular function is performed by the translation process, in which triplets of nucleotides in a nucleic acid polymer (mRNA) encode specific amino acids in a protein polymer that folds into a three-dimensional structure. The folded protein then performs one or more molecular activities, often as one part of a complex and coordinated physiological network. Prebiotic systems, lacking the ability to explicitly translate information between genotype and phenotype, would have depended upon either chemosynthetic pathways to generate its components-constraining its complexity and evolvability- or on the ambivalence of RNA as both carrier of information and of catalytic functions-a possibility which is still supported by a very limited set of catalytic RNAs. Thus, the emergence of translation during early evolutionary history may have allowed life to unmoor from the setting of its origin. The origin of translation machinery also represents an entirely novel and distinct threshold of behavior for which there is no abiotic counterpart-it could be the only known example of computing that emerged naturally at the chemical level. Here we describe translation machinery's decoding system as the basis of cellular translation's information-processing capabilities, and the four operation types that find parallels in computer systems engineering that this biological machinery exhibits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-023-10125-0 | DOI Listing |
Hepatology
January 2025
Université Côte d'Azur, INSERM, U1065, C3M, Nice, France.
Background And Aims: Alcohol-related liver disease (ALD) is one of the leading causes of severe liver disease with limited pharmacological treatments for alcohol-related steatohepatitis (ASH). CD44, a glycoprotein mainly expressed in immune cells, has been implicated in multiple inflammatory diseases but has never been studied in the ALD context. We therefore studied its contribution to ASH development in mice and its expression in ALD patients.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Rome Open University, Rome, Italy; and.
Racil, G, Padulo, J, Trabelsi, Y, Frizziero, A, Russo, L, and Migliaccio, GM. Rhythmic exercises before basketball training: A study on motor skills, static balance, and reaction speed in school-aged children. J Strength Cond Res 38(12): e761-e768, 2024-The aim of this study was to investigate the effects of combining rhythmic exercises with basketball training on the improvement of basic motor and physical skills in children.
View Article and Find Full Text PDFBlood
January 2025
Children's Hospital of Philadelphia & University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States.
Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.
View Article and Find Full Text PDFACS Sens
January 2025
The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.
Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States.
Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!