Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inner-outer asymmetry, where the outer flanker induces stronger crowding than the inner flanker, is a hallmark property of visual crowding. It is unclear the contribution of inner-outer asymmetry to the pattern of crowding errors (biased predominantly toward the flanker identities) and the role of training on crowding errors. In a typical radial crowding display, 20 observers were asked to report the orientation of a target Gabor (7.5° eccentricity) flanked by either an inner or outer Gabor along the horizontal meridian. The results showed that outer flanker conditions induced stronger crowding, accompanied by assimilative errors to the outer flanker for similar target/flanker elements. In contrast, the inner flanker condition exhibited weaker crowding, with no significant patterns of crowding errors. A population coding model showed that the flanker weights in the outer flanker condition were significantly higher than those in the inner flanker condition. Nine observers continued to train the outer flanker condition for four sessions. Training reduced inner-outer asymmetry and reduced flanker weights to the outer flanker. The learning effects were retained over 4 to 6 months. Individual differences in the appearance of crowding errors, the strength of inner-outer asymmetry, and the training effects were evident. Nevertheless, our findings indicate that different crowding mechanisms may be responsible for the asymmetric crowding effects induced by inner and outer flankers, with the outer flankers dominating the appearance more than the inner ones. Training reduces inner-outer asymmetry by reducing target/flanker confusion, and learning is persistent over months, suggesting that perceptual learning has the potential to improve visual performance by promoting neural plasticity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399601 | PMC |
http://dx.doi.org/10.1167/jov.23.8.3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!