Developing advanced porous materials with industrial potential to separate multicomponent gas mixtures that are structurally similar is a crucial but challenging task. Here, we report the efficient one-step separation of ethylene (CH) from acetylene (CH) and carbon dioxide (CO) using an ultramicroporous metal-organic framework UTSA-16. The synergistic effect of the polarized carboxyl groups and coordinated water molecules in its pore channel enables the material to have high uptakes for CH and CO due to electrostatic potential matching, as well as excellent separation selectivity against CH. Breakthrough experiments suggest that UTSA-16 can efficiently separate 99.9% pure CH from ternary mixtures with a high productivity of 403 L kg. Moreover, the preparation cost of UTSA-16 is significantly lower than other related adsorbents by 40-2000 times, indicating its unique potential for industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh00697b | DOI Listing |
Chemistry
January 2025
Fujian Normal University, School of Chemistry and Materials, No.8 Shangsan Road, ., Fuzhou City, CHINA.
The advancement of high-value CH4 purification technology within the natural gas industry is paramount for industrial processes. Herein, we constructed ZJNU-402, a new porous material characterized by permanent porosity, as an effective adsorbent for separating C3H8/CH4 and C2H6/CH4 mixtures. The findings reveal an outstanding C3H8 adsorption capacity of 68 cm3 g-1 and a moderate C2H6 adsorption rate of 42 cm3 g-1, with a notably lower CH4 adsorption rate of 11 cm3 g-1.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States.
Eukaryotic plasma membranes exhibit nanoscale lateral lipid heterogeneity, a feature that is thought to be central to their function. Studying these heterogeneities is challenging since few biophysical methods are capable of detecting domains at submicron length scales. We recently showed that cryogenic electron microscopy (cryo-EM) can directly image nanoscale liquid-liquid phase separation in extruded liposomes due to its ability to resolve the intrinsic thickness and electron density differences of ordered and disordered phases.
View Article and Find Full Text PDFPharmaceutics
November 2024
Faculty of Pharmaceutical Science, UNESP-São Paulo State University, Rodovia Araraquara-Jaú, Km 01, Araraquara 14801-902, Brazil.
: This study evaluated how the relative proportion of chitosan (CS) to the polyanions alginate (ALG) and hydroxypropyl-methylcellulose phthalate (HP) affects the colloidal properties of mesalazine (MSZ) nanosuspensions as a strategy to produce particles with specific characteristics. : Nanosuspensions were prepared using a bottom-up approach based on acid-base reactions and were modified with CS in a binary mixture with ALG or a ternary mixture with ALG and HP. The particle size, polydispersity index (PDI), zeta potential, morphology, and drug association efficiency were analyzed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinic of Preventive, Community Dentistry and Oral Health, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. no 2, 300041 Timisoara, Romania.
Good oral hygiene is crucial during treatment with fixed appliances, emphasising the need for additional or alternative oral health methods during orthodontic treatment. This study investigates the effect of essential oil (EO)-based preparations on biofilm adhesion to orthodontic archwires. Five identical-sized orthodontic archwires of different materials were tested using therapeutic and preventive applications of essential oils.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!