Mechanical cues play a crucial role in regulating physiological and pathological processes, and atomic force microscopy (AFM) has become an important and standard tool for measuring the mechanical properties of single cells. In particular, providing a capability to manipulate cells in a three-dimensional (3D) space benefits enhancing the applications of AFM measurements in cell biology. Here, we present the complementary integration of AFM and micropipette micromanipulation, which allows precise 3D manipulations and nanomechanical measurements of single living cells. A micropipette micromanipulation system under the guidance of optical microscopy was established to isolate single living cells, and polydimethylsiloxane (PDMS) micropillar substrates were used to physically immobilize the isolated living cells for downstream AFM detection. The viscoelastic properties (Young's modulus, relaxation time, viscosity) of cells were quantitatively measured by AFM-based indentation assay. The effectiveness of micropipette-assisted AFM in single-cell analysis was confirmed on both living animal suspended cells and living animal adherent cells, showing dramatic changes in cell mechanics in different states and revealing the dynamics of single cells grown on micropillar arrays. The study demonstrates the great potential of a micropipette to aid AFM in single-cell manipulations for better accessing the mechanical cues involved in cellular processes, which will allow additional studies of single-cell mechanics and will benefit the field of mechanobiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr02404k | DOI Listing |
Langmuir
January 2025
Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Coacervation is generally treated as a liquid-liquid phase separation process and is controlled mainly by thermodynamics. However, kinetics could make a dominant contribution, especially in systems containing multiple interactions. In this work, using peptides of (XXLY)SSSGSS to tune the charge density and the degree of hydrophobicity, as well as to introduce secondary structures, we evaluated the effect of kinetics on biphasic coacervates formed by peptides with single-stranded oligonucleotides and quaternized dextran at varying pH values.
View Article and Find Full Text PDFJ Virus Erad
December 2024
HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.
View Article and Find Full Text PDFJ Med Virol
January 2025
Oncohaematology and Cell Therapy Unit, Department of Medical Oncology, National Cancer Institute, Aviano, Italy.
Previous reports have indicated that during the era of combination antiretroviral therapy, the major causes of morbidity and mortality in people living with HIV (PLWH) were not solely linked to HIV-related opportunistic infections but also to cancers that were difficult to manage due to HIV-related immunodeficiency. We investigated whether PLWH who underwent autologous hematopoietic stem cell transplantation (ASCT) for lymphomas experienced significant morbidity over the past thirty years following HIV infection. We conducted a retrospective follow-up study of 49 PLWH over a 10-year period following ASCT.
View Article and Find Full Text PDFBiomater Sci
January 2025
Engineered Living Materials Institute, Cornell University, Ithaca, NY 14850, USA.
An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13676, United States.
Chloride is the most abundant anion in cells and plays many critical roles in maintaining cellular homeostasis. However, current chloride indicators are rare with inherent sensitivity in their emission properties, such as vulnerability to pH changes or short emission lifetimes. These limitations restrict their application in aqueous media and imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!