Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although both electromagnetic and charge transfer (CT) mechanisms play a role in surface-enhanced Raman scattering (SERS), the contribution of the latter is limited by poor CT efficiency. Herein, we propose molecular-enhanced Raman spectroscopy (MERS) for the first time and develop a simple strategy to induce strong CT-enhanced Raman signals using a phosphoester (POE) electron-transfer bridge. Consequently, an excellent POE-enhanced Raman effect was found when various mono-, bis-, and trisaminobenzene compounds were used as probe analytes. Quantification analysis of this MERS effect revealed that the enhancement ratio and factor of the POE molecules can be up to 87% and ∼10, respectively. Spectroscopic analysis and density functional theory calculation confirmed that this effect was because of the formation of intermolecular hydrogen bonds, which promotes CT via electronic reorganization and enhances the Raman signals of target analytes. These results demonstrate the feasibility of MERS for highly CT-enhanced Raman signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c01737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!