A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heat capacity changes associated with G-quadruplex unfolding. | LitMetric

Heat capacity changes associated with G-quadruplex unfolding.

J Chem Phys

Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.

Published: August 2023

G-quadruplexes are four-stranded DNA structures that have been found in the cell and are thought to act as elements of control in genomic events. The measurements of the thermodynamic stability, ΔG, of G-quadruplexes shed light on the molecular forces involved in the stabilization of these structures. In thermodynamic studies, the differential heat capacity, ΔCP, of the folded and unfolded states of a G-quadruplex is a fundamental property that describes the temperature dependences of the differential enthalpy, ΔH, entropy, ΔS, and free energy, ΔG. Despite its recognized importance, the ΔCP of G-quadruplex unfolding has not been measured directly. Here, we use differential scanning calorimetry to evaluate changes in heat capacity, ΔCP, accompanying the unfolding transitions of G-quadruplexes formed by modified DNA sequences from the promoter regions of the c-MYC, VEGF, and Bcl-2 oncogenes. The average value of ΔCP is 0.49 ± 0.12 kcal mol-1 K-1. Our analysis revealed that disregarding ΔCP leads to significant errors in extrapolated values of the differential enthalpy, ΔH, and entropy, ΔS, of the folded and unfolded DNA conformations. Although the compensation between ΔH and ΔS weakens the effect of ΔCP on the differential free energy, ΔG, neglecting ΔCP may still result in relative errors in ΔG extrapolated to room temperature as great as 140%. We emphasize the importance of proper consideration of the effect of ΔCP in conformational studies of guanine-rich DNA molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0157749DOI Listing

Publication Analysis

Top Keywords

heat capacity
12
g-quadruplex unfolding
8
Δcp
8
capacity Δcp
8
folded unfolded
8
differential enthalpy
8
enthalpy Δh
8
Δh entropy
8
entropy Δs
8
free energy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!