Background: Lack of anatomy recognition represents a clinically relevant risk in abdominal surgery. Machine learning (ML) methods can help identify visible patterns and risk structures; however, their practical value remains largely unclear.
Materials And Methods: Based on a novel dataset of 13 195 laparoscopic images with pixel-wise segmentations of 11 anatomical structures, we developed specialized segmentation models for each structure and combined models for all anatomical structures using two state-of-the-art model architectures (DeepLabv3 and SegFormer) and compared segmentation performance of algorithms to a cohort of 28 physicians, medical students, and medical laypersons using the example of pancreas segmentation.
Results: Mean Intersection-over-Union for semantic segmentation of intra-abdominal structures ranged from 0.28 to 0.83 and from 0.23 to 0.77 for the DeepLabv3-based structure-specific and combined models, and from 0.31 to 0.85 and from 0.26 to 0.67 for the SegFormer-based structure-specific and combined models, respectively. Both the structure-specific and the combined DeepLabv3-based models are capable of near-real-time operation, while the SegFormer-based models are not. All four models outperformed at least 26 out of 28 human participants in pancreas segmentation.
Conclusions: These results demonstrate that ML methods have the potential to provide relevant assistance in anatomy recognition in minimally invasive surgery in near-real-time. Future research should investigate the educational value and subsequent clinical impact of the respective assistance systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583931 | PMC |
http://dx.doi.org/10.1097/JS9.0000000000000595 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!