In recent years, a variety of adsorbents have been developed for Hg removal. However, these adsorbents are unsatisfactory for adsorption due to narrow and irregular pore channels or poor adsorption capacity and low stability. Therefore, it is worth exploring a porous Hg adsorbent material with high adsorption performance and stability. In this study, a benzothiadiazole-based nonbranching functionalized covalent organic framework (COF) material (TPS-COF) by one-step synthesis was reported, which exhibited a high specific surface area of 1564 m g, high crystallinity and stability attributed to its high conjugated linkage structure of benzothiadiazole. In addition, due to the rich S and N elements of the benzothiadiazole unit, it exhibited excellent adsorption performance on Hg, including excellent adsorption amount (1040 mg g), high initial adsorption rate (448 mg g min) and very short adsorption equilibrium time (10 min), with an efficient removal rate of Hg in the pH range of 2-8. After desorption, the TPS-COF still retained good pore stability, adsorption capacity, and reusability. Such a one-step synthetic unbranched functionalization strategy provides further insights to achieve a good balance between the high crystallinity, functionality and stability of COFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt02083e | DOI Listing |
Nano Lett
January 2025
Department of Physics, Shahid Beheshti University, Tehran 1635649771, Iran.
We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches.
View Article and Find Full Text PDFNanoscale
January 2025
Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd, Wuhan, China.
Acetaminophen (AP) is a widely used analgesic and antipyretic drug, but its excessive use poses health risks and contributes to environmental contamination. In response to the need for rapid, accurate, and cost-effective detection methods, we developed a highly sensitive and selective electrochemical sensor for AP. The sensor was based on a composite of UIO-66-NH (UN) and an MXene (TiC).
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
As one of the key diagnostic methods for detecting biomarkers and antigen-antibody interactions, the luminescent oxygen channel immunoassay (LOCI) has been widely applied in bioanalysis and other fields. In the context of LOCI, the performance of the prepared donor polystyrene (PS) microspheres significantly impacts the detection signal values. In this study, an attempt was made to synthesize PS microspheres via one-step polymerization of styrene with an amphiphilic monomer (PEOOH), followed by swelling the silicon phthalocyanine photosensitizer into the PS microspheres, resulting in the functionalization of the PS microspheres with polyethylene glycol segments.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute for Inorganic Chemistry, GERMANY.
We report a selective one-step synthesis of perarylated borirenes by reaction of antiaromatic boroles with 1,4-diarylbuta-1,3-diynes. Mechanistic studies, both experimental and computational, reveal key intermediates, including boranorbornadiene and 7-borabicyclo[4.1.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Energy and Environment, Shenyang Aerospace University, Shenyang, 110136, China.
With high microporosity, good dispersibility, excellent specific surface area and large content surface functional group, hydrochar demonstrates significant advantages and strong affinity towards pollutants in water. Modification method plays a significant role for anion adsorption by modified hydrochar, layered double hydroxide (LDH) modified hydrocarbons (Mg/Al-LDH@HC-HCl) have been synthesized through a one-step hydrothermal approach and activated with hydrochloric acid in this paper. The physical and chemical characteristics of the hydrochar, both before and after modification, are analyzed using BET, SEM-EDS, TEM, XRD, FTIR, and XPS to explore the phosphate adsorption mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!