Oxidative phosphorylation (OXPHOS) is a well-documented dependency of leukemia stem cells (LSC). In this issue of Cancer Research, Griessinger and colleagues have identified cold sensitivity as a new vulnerability of OXPHOS-dependent LSCs. Mechanistically, cold sensitive leukemic cell death is caused by membrane permeabilization due to OXPHOS-dependent differences in membrane lipid species abundance. This work sheds new light onto the contribution of OXPHOS to lipid homeostasis in LSCs and has important implications for the handling and processing of primary acute myeloid leukemia specimens. See related article by Griessinger et al., p. 2461.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-23-1387 | DOI Listing |
J Cell Mol Med
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
The treatment of Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-cell ALL) has seen substantial progress over the past two decades. The introduction of tyrosine kinase inhibitor (TKIs) has resulted in dramatic improvements in long-term survival. Allogeneic hematopoietic stem cell transplantation (allo-HSCT), with its curative potential, has always been an integral part of the treatment algorithm of Ph+ ALL.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Richter transformation (RT) is a rare albeit devastating complication of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL). RT is defined as an aggressive lymphoma, typically diffuse large B-cell lymphoma, in the setting of CLL. A clonal relationship to the preceding CLL clone is detected in the majority of RT cases and confers more aggressive clinicopathologic kinetics, resistance to standard chemoimmunotherapy regimens, and inferior survival.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
Acute myeloid leukemia (AML) is an aggressive malignancy that poses significant challenges due to high rates of relapse and resistance to treatment, particularly in older populations. While therapeutic advances have been made, survival outcomes remain suboptimal. The evolution of DNA and RNA sequencing technologies, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-Seq), has significantly enhanced our understanding of AML at the molecular level.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: A patient with acute myeloid leukemia (AML) presented with a cardiac mass of unknown nature. This case underscores the importance of careful monitoring and a multidisciplinary approach in managing and differentiation of rare cardiac complications in leukemia patients. It aims to improve diagnostic accuracy and therapeutic outcomes in similar challenging scenarios.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!