Propose: Berberine (BBR) is extensively studied as an outstanding anti-hyperuricemia drug. However, the clinical application of BBR was limited due to its poor absorption and low bioavailability. Therefore, there is an urgent necessity to find a novel drug formulation to address the issues of BBR in clinical application.
Methods: Herein, we conducted the solubility, characterization experiments to verify whether BBR and sodium taurocholate (STC) self-assembled nanoparticles (STC@BBR-SANPs) could form. Furthermore, we proceeded the release experiment in vitro and in vivo to investigate the drug release effect. Finally, we explored the therapeutic effect of STC@BBR-SANPs on hyperuricemia (HUA) through morphological observation of organs and measurement of related indicators.
Results: The solubility, particle size, scanning electron microscopy (SEM), and stability studies showed that the stable STC@BBR-SANPs could be formed in the BBR-STC system at ratio of 1:4. Meanwhile, the tissue distribution experiments revealed that the STC@BBR-SANPs could accelerate the absorption and distribution of BBR. In addition, the pharmacology study demonstrated that both BBR and STC@BBR-SANPs exhibited favorable anti-HUA effects and nephroprotective effects, while STC@BBR-SANPs showed better therapeutic action than that of BBR.
Conclusion: This work indicated that STC@BBR-SANPs can be self-assembly formed, and exerts excellent uric acid-lowering effect. STC@BBR-SANPs can help to solve the problems of poor solubility and low absorption rate of BBR in clinical use, and provide a new perspective for the future development of BBR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10387259 | PMC |
http://dx.doi.org/10.2147/IJN.S409513 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!