Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random-walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the continuous parameters simultaneously. Variational phylogenetics is a promising alternative to MCMC, in which one fits an approximating distribution to the unnormalized phylogenetic posterior. Previous work fit this variational approximation using stochastic gradient descent, which is the canonical way of fitting general variational approximations. However, phylogenetic trees are special structures, giving opportunities for efficient computation. In this paper we describe a new algorithm that directly generalizes the Felsenstein pruning algorithm (a.k.a. sum-product algorithm) to compute a composite-like likelihood by marginalizing out ancestral states and subtrees simultaneously. We show the utility of this algorithm by rapidly making point estimates for branch lengths of a multi-tree phylogenetic model. These estimates accord with a long MCMC run and with estimates obtained using a variational method, but are much faster to obtain. Thus, although generalized pruning does not lead to a variational algorithm as such, we believe that it will form a useful starting point for variational inference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10391877PMC
http://dx.doi.org/10.1186/s13015-023-00235-1DOI Listing

Publication Analysis

Top Keywords

pruning algorithm
8
algorithm
6
variational
6
topology-marginal composite
4
composite likelihood
4
likelihood generalized
4
phylogenetic
4
generalized phylogenetic
4
phylogenetic pruning
4
algorithm bayesian
4

Similar Publications

Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).

View Article and Find Full Text PDF

Objectives: The research objectives were to identify and synthesise prevailing definitions and indices of resilience in maternal, newborn, and child health (MNCH) and propose a harmonised definition of resilience in MNCH research and health programmes in low- and middle-income countries (LMICs).

Design: Scoping review using Arksey and O'Malley's framework and a Delphi survey for consensus building.

Participants: Mothers, new-borns, and children living in low- and middle-income countries were selected as participants.

View Article and Find Full Text PDF

Identifying cancer prognosis genes through causal learning.

Brief Bioinform

November 2024

School of Artificial Intelligence, Jilin University, 3003 Qianjin Street, 130012 Changchun, China.

Accurate identification of causal genes for cancer prognosis is critical for estimating disease progression and guiding treatment interventions. In this study, we propose CPCG (Cancer Prognosis's Causal Gene), a two-stage framework identifying gene sets causally associated with patient prognosis across diverse cancer types using transcriptomic data. Initially, an ensemble approach models gene expression's impact on survival with parametric and semiparametric hazard models.

View Article and Find Full Text PDF

Impurity detection of premium green tea based on improved lightweight deep learning model.

Food Res Int

January 2025

Tea Research Institute of Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Mechanical and Electronic Engineering, Shihezi University, Shihezi 832000, China. Electronic address:

Tea may be mixed with impurities during picking and processing, which can lower their quality. At present, the sorting of impurities in premium green tea mainly relies on manual labor, which is inefficient. In response to the technical challenges in this industry, this article uses deep learning technology to detect impurities in premium green tea.

View Article and Find Full Text PDF

Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust () diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!