Spirulina platensis was first isolated from Lake Texcoco by Aztecs in the sixteenth century. In 2012, spirulina was considered to be safe dietary supplement by the Food and Drug Administration (FDA). Spirulina is a cyanophytic microalgae that is often considered as single cell protein. It contains many essential amino acids, proteins, fatty acids, antioxidant pigments, carotenoids, and cyanogenic pigments, that is, phycocyanobilins and phycocyanins (Eriksen, Appl Microbiol Biotechnol, 80(1):1-4, 2008). Components of spirulina are investigated for many health benefits and for pharmaceutical uses (Karkos et al., Spirulina in clinical practice: evidence-based human applications). Spirulina has been found to have a role in growth, immunity (Wu et al., Arch Toxicol, 90(8):1817-40, 2016), antioxidant (Wu et al., Arch Toxicol, 90(8):1817-40, 2016), antiviral (Ayehunie et al., J Acquir Immune Defic Syndr Hum Retrovirol, 18(1):7-12, 1998), antitoxicologic, anti-cancerogenic (Hirahashi et al., Int Immunopharmacol, 2(4):423-34, 2002), antidiabetic (Layam and Reddy, Diabetol Croat, 35(2):29-33, 2006), and neuroprotective properties. In this study, we focused on spirulina components in anti-Parkinson's and anti-Alzheimer's activity. Four potential targets, two for each activity, that is, structure of parkinE3 ligase (PDB ID:4I1H) and structure of BACE bound to 5-(3-(5-chloropyridin-3-yl)phenyl)-5-cyclopropyl-2-imino-3-methylimidazolidin-4one (PDBI D:4DJx) for anti-Parkinson's activity and structure of human MAO B in complex with selective inhibitor safinamide (PDB ID:2V5Z) and crystal structure of human BACE-1 in complex with CNP520(PDB ID:6EQM) for anti-Alzheimer's activity, have been selected. The in silico results and scoring of virtual screening, that is, molecular docking, were compared with commonly used marketed drugs such as levodopa for Parkinson's disease (PD) and rivastigmine (Rösler et al., BMJ, 318(7184):633-40, 1999) for Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-31978-5_13DOI Listing

Publication Analysis

Top Keywords

anti-alzheimer's activity
12
spirulina components
8
components anti-parkinson's
8
anti-parkinson's anti-alzheimer's
8
arch toxicol
8
toxicol 9081817-40
8
9081817-40 2016
8
activity structure
8
structure human
8
spirulina
7

Similar Publications

Organoselenium compounds beyond antioxidants.

Future Med Chem

December 2024

Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology - Chennai, Chennai, India.

Organoselenium chemistry has become a significant field due to its role in synthesizing numerous biologically active and therapeutic compounds. In early phase, researchers focused on designing organoselenium compounds with antioxidant properties and were quite successful. In last two decades, synthetic chemists shifted their focus toward synthesis of organoselenium compounds with biological properties, moving beyond their traditional antioxidant properties.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) and AChE inhibitors play critical roles in the early diagnosis and treatment of Alzheimer's disease (AD). Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform was constructed for both AChE activity monitoring and AChE inhibitor screening by exploring a Cu (I) compound, CuI (SR) (R = CHCHNH), as a fluorescent probe. In comparison of most other fluorescent probes, CuI (SR) presented exceptional stability against pH, temperature, UV irradiation, redox agents, and metal ions, as well as good recyclability due to its unique chemical structure.

View Article and Find Full Text PDF

Hericium erinaceus (Bull.) Pers. is a respected medicinal and edible fungus known for its outstanding nutritional profile.

View Article and Find Full Text PDF

Nanoconjugates are promising for therapeutic drug delivery and targeted applications due to the numerous opportunities to functionalize their surface. The present study reports the synthesis of 5-fluorouracil (5-FU)-entrapped polyvinylpyrrolidone (PVP) nanoconjugates, precisely 5-FU-PVP and 5-FU-PVP-Au, and the evaluation of protein aggregation inhibition efficiency. The 5-FU-loaded polymer nanoconjugates were functionalized with gold nanoparticles and analyzed using characterization techniques like dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and zeta potential analysis.

View Article and Find Full Text PDF

Therapeutic Potential of Prenylated Flavonoids of the Fabaceae Family in Medicinal Chemistry: An Updated Review.

Int J Mol Sci

December 2024

Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.

Much attention has been paid to the potential biological activities of prenylated flavonoids (PFs) in various plant families over the last decade. They have enormous potential for biological activities, such as anti-cancer, anti-diabetic, antimicrobial, anti-inflammatory, anti-Alzheimer's, and neuroprotective activities. Medicinal chemists have recently shown a strong interest in PFs, as they are critical to the development of new medicines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!