The genus Phyllanthus belongs to one of the largest plant families, the Phyllantaceae (L.). Phyllanthus niruri is an annual perennial herb that grows in tropical Asia, America, China, and the islands of the Indian Ocean. Numerous alkaloids, steroids, flavonoids, lignans, coumarins, polyphenols, and lipids are present in Phyllanthus. The effects of plants have been studied for a variety of purposes, including their antioxidant (Giribabu et al., Evid Based Complement Alternat Med, 2014), anti-inflammatory (Porto et al., Revista Brasileira de Pharmacognosy, 2013), antinociceptive (Sathisha et al., Indian Drugs, 2009), analgesic (Mostofa et al., BMC Complement Altern Med, 2017), antiulcer (Mali et al., Biomed Aging Pathol, 2011), antiarthritic (Obidike and Salawu, Planta Medica, 2010), antiplasmodial (Shilpa et al., Environ Dis, 2018), immunomodulatory (Manikkoth et al., Anticonvulsant activity of Phyllanthus amarus in experimental animal models), anticonvulsant (Wasnik et al., Int J Pharm Sci Rev Res, 2014), antidepressant (Venkateswaran et al., Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: In vitro and in vivo studies (antiviral agent/Marmota monax/DNA polymerase/hepatitis B surface antigen/woodchuck hepatitis surface antigen). In Hepatitis B and The Prevention of Primary Cancer of The Liver: Selected Publications of Baruch S Blumberg, pp 535-539), antiviral (Venkateswaran et al., Effects of an extract from Phyllanthus niruri on hepatitis B and woodchuck hepatitis viruses: In vitro and in vivo studies (antiviral agent/Marmota monax/DNA polymerase/hepatitis B surface antigen/woodchuck hepatitis surface antigen). In Hepatitis B and The Prevention of Primary Cancer of The Liver: Selected Publications of Baruch S Blumberg, pp 535-539), antitumor (Sharma et al., Asian Pac J Cancer Prev, 2009), hyperlipidemia (Khanna et al., J Ethnopharmacol, 2002), and antifertility (Ezeonwu, Inquiries J, 2011). For additional docking investigations with distinct proteins, the leaf chemicals are assessed, that is, the crystal structure of serine protease hepsin in complex with inhibitor [PDB ID:5 CE1] for antiviral activity human topoisomerase II beta in complex with DNA and etoposide [PDB ID:3QX3] and crystal structure of E. coli GyraseB 24 kDa in complex with 4-(4-bromo-1H-pyrazol-1-yl)-6-[(ethylcarbamoyl)amino]-N-(pyridin-3-yl) pyridine-3-carboxamide [PDB ID: 6F86] for antibacterial activity and have been selected. To evaluate the in silico results and grading of virtual screening, or molecular docking, ritonavir antiviral activity and ampicillin for antibacterial activity were used as a benchmark.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-031-31978-5_9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!