Cell death, such as apoptosis and ferroptosis, play essential roles in the process of development, homeostasis, and pathogenesis of acute and chronic diseases. The increasing number of studies investigating cell death types in various diseases, particularly cancer and degenerative diseases, has raised hopes for their modulation in disease therapies. However, identifying the presence of a particular cell death type is not an obvious task, as it requires computationally intensive work and costly experimental assays. To address this challenge, we present CellDeathPred, a novel deep-learning framework that uses high-content imaging based on cell painting to distinguish cells undergoing ferroptosis or apoptosis from healthy cells. In particular, we incorporate a deep neural network that effectively embeds microscopic images into a representative and discriminative latent space, classifies the learned embedding into cell death modalities, and optimizes the whole learning using the supervised contrastive loss function. We assessed the efficacy of the proposed framework using cell painting microscopy data sets from human HT-1080 cells, where multiple inducers of ferroptosis and apoptosis were used to trigger cell death. Our model confidently separates ferroptotic and apoptotic cells from healthy controls, with an average accuracy of 95% on non-confocal data sets, supporting the capacity of the CellDeathPred framework for cell death discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390533PMC
http://dx.doi.org/10.1038/s41420-023-01559-yDOI Listing

Publication Analysis

Top Keywords

cell death
24
ferroptosis apoptosis
12
cell painting
12
cell
9
based cell
8
framework cell
8
data sets
8
death
6
celldeathpred deep
4
deep learning
4

Similar Publications

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Morbillivirus Canis Infection Induces Activation of Three Branches of Unfolded Protein Response, MAPK and Apoptosis.

Viruses

November 2024

Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina.

, commonly named Canine distemper virus (CDV), is a morbillivirus implicated in several signs in the family. In dogs (), common signs of infection include conjunctivitis, digital hyperkeratosis and neuropathologies. Even with vaccination, the canine distemper disease persists worldwide so the molecular pathways implicated in the infection processes have been an interesting and promising area in new therapeutic drugs research in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!