Recent studies have linked spreading depolarization (SD, an electro-chemical wave in the brain following stroke, migraine, traumatic brain injury, and more) with increase in cerebrospinal fluid (CSF) flow through the perivascular spaces (PVSs, annular channels lining the brain vasculature). We develop a novel computational model that couples SD and CSF flow. We first use high order numerical simulations to solve a system of physiologically realistic reaction-diffusion equations which govern the spatiotemporal dynamics of ions in the extracellular and intracellular spaces of the brain cortex during SD. We then couple the SD wave with a 1D CSF flow model that captures the change in cross-sectional area, pressure, and volume flow rate through the PVSs. The coupling is modelled using an empirical relationship between the excess potassium ion concentration in the extracellular space following SD and the vessel radius. We find that the CSF volumetric flow rate depends intricately on the length and width of the PVS, as well as the vessel radius and the angle of incidence of the SD wave. We derive analytical expressions for pressure and volumetric flow rates of CSF through the PVS for a given SD wave and quantify CSF flow variations when two SD waves collide. Our numerical approach is very general and could be extended in the future to obtain novel, quantitative insights into how CSF flow in the brain couples with slow waves, functional hyperemia, seizures, or externally applied neural stimulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390554 | PMC |
http://dx.doi.org/10.1038/s41598-023-38938-5 | DOI Listing |
Fluids Barriers CNS
January 2025
Medical Image Processing Department, CHU Amiens-Picardie University Hospital, Amiens, France.
Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Radiology, miami, FL, USA.
Background: Clearance of brain toxins occurs during sleep, although the mechanism remains unknown. Previous studies implied that the intracranial aqueductal cerebrospinal fluid (CSF) oscillations are involved, but no mechanism was suggested. The rationale for focusing on the aqueductal CSF oscillations is unclear.
View Article and Find Full Text PDFAnn Biol Clin (Paris)
December 2024
Hematology Laboratory, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France.
While the latest WHO classification of hematological neoplasms helps refine the diagnostic criteria for anaplastic large cell lymphomas (ALCL), their diagnosis can still be challenging. This retrospective series of 10 ALCL cases illustrates the cytological appearance and immunological profile obtained through flow cytometry (FCM) from various sample types, including lymph node biopsies (LN), peripheral blood (PB), cerebrospinal fluid (CSF), and pleural fluid (PF). ALCL exhibits a polymorphic cytological appearance, ranging from "doughnut" cells to Hodgkin-like cells, very large cells, and small cells, with this polymorphism being particularly pronounced in ALK (-) forms.
View Article and Find Full Text PDFJ Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!