Asthma is a common chronic allergic disease that affects a significant percentage of the world's population. Niosomes are nanoparticles consisting of non-ionic surfactants that can be used for drug delivery. This research was designed to investigate the impacts of inhalation of simple and niosomal forms of myrtenol against adverse consequences of asthma in rats. Asthma induction was performed via injection of ovalbumin, followed by its inhalation. Niosomes were created by a heating protocol, and their physicochemical features were evaluated. Forty-nine male Wistar rats were allotted into 7 groups (n=7 each): Control (CTL), vacant niosome (VN), Asthma, Asthma+VN, Asthma+SM (simple myrtenol), Asthma+NM (niosomal myrtenol), and Asthma+B (budesonide). Lung remodeling, serum immunoglobulin E (IgE), inflammatory  and cytokines, and antioxidant factors in the lung tissue and bronchoalveolar fluid (BALF), as well as), were evaluated. The results showed that myrtenol-loaded niosomes had appropriate encapsulation efficiency, kinetic release, size, and zeta potential. The thickness of the epithelial cell layer in the lungs, as well as cell infiltration, fibrosis, IgE, reactive oxygen species, interleukin (IL)-6, and tumor nuclear factor alpha (TNF-α) levels, decreased significantly. In contrast, superoxide dismutase and glutathione peroxide activity increased significantly in the serum and BALF of the treated groups. The niosomal form of myrtenol revealed a higher efficacy than simple myrtenol and was similar to budesonide in ameliorating asthma indices.  Inhalation of simple and niosomal forms of myrtenol improved the detrimental changes in the asthmatic lung. The niosomal form induced more prominent anti-asthmatic effects comparable to those of budesonide.

Download full-text PDF

Source
http://dx.doi.org/10.18502/ijaai.v22i3.13054DOI Listing

Publication Analysis

Top Keywords

niosomal myrtenol
8
rats asthma
8
inhalation simple
8
simple niosomal
8
niosomal forms
8
forms myrtenol
8
simple myrtenol
8
niosomal form
8
myrtenol
7
niosomal
6

Similar Publications

Lung Ischemia-reperfusion injury (LIRI) is a risk during lung transplantation that can cause acute lung injury and organ failure. In LIRI, the NF-E2-related factor 2(Nrf2)/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway are two major pathways involved in regulating oxidative stress and inflammation, respectively. Myrtenol, a natural compound with anti-inflammatory and antioxidant properties, has potential protective effects against IRI.

View Article and Find Full Text PDF

Preparation and Evaluation of Preventive Effects of Inhalational and Intraperitoneal Injection of Myrtenol Loaded Nano-Niosomes on Lung Ischemia-Reperfusion Injury in Rats.

J Pharm Sci

January 2024

Department of Physiology and Pharmacology, Afzalipour Medical Faculty, Kerman university of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:

Introduction: Ischemia-reperfusion injury (IRI) is directly related to forming reactive oxygen species, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and cytokines. Niosomes are nanocarriers and an essential part of drug delivery systems. We aimed to investigate the effects of myrtenol's inhaled and intraperitoneal niosomal form, compared to its simple form, on lung ischemia reperfusion injury (LIRI).

View Article and Find Full Text PDF

Asthma is a common chronic allergic disease that affects a significant percentage of the world's population. Niosomes are nanoparticles consisting of non-ionic surfactants that can be used for drug delivery. This research was designed to investigate the impacts of inhalation of simple and niosomal forms of myrtenol against adverse consequences of asthma in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!