Staphylococcus aureus (S. aureus) is a prominent pathogen responsible for mastitis in dairy goats, and capable of contaminating farm environments. Luteolin is a naturally derived flavonoid found in many plant types. To our best of knowledge, this study involved the initial investigation into the prevalence of S. aureus and screened the multidrug-resistant (MDR) S. aureus from raw milk samples and farm environments. Furthermore, we explored the antimicrobial and antibiofilm activities of luteolin against MDR S. aureus. Antibiofilm activity was evaluated via crystal violet staining and confocal laser scanning microscopy (CLSM). Bacterial morphology and biofilm microstructure were observed via scanning electron microscopy (SEM), and the antibiofilm mechanisms were further explored based on extracellular polymeric substance (EPS) production, extracellular DNA (eDNA) content, and quantitative reverse transcription PCR (qRT-PCR). In total, 28 and 43 S. aureus isolates were isolated from raw milk and environmental samples, respectively. Raw milk samples had the highest prevalence of S. aureus (58.33%), followed by sewage sludge (35.42%), soil (27.78%), excrement (19.44%), bulk tank (12.50%), milking parlor (11.11%), and feed (7.50%). Among the isolated strains, 40 isolates (56.34%) expressed the MDR phenotype. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of luteolin against MDR S. aureus were 8-32 μg/mL and 16-64 μg/mL, respectively. Compared to that in the untreated control isolate, the number of dead cells increased, while the auto-aggregation and cell surface hydrophobicity decreased. Moreover, the cell membrane dissolved with the increase in luteolin concentration. Luteolin down-regulated the transcription of seven biofilm related genes: icaA, icaD, icab, hld, hla, agrA and RNAIII. These results indicated that S. aureus coexisted in raw milk and goat farm environments, and also suggested the potential of luteolin as a promising antibiofilm agent against MDR S. aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122274 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFPlanta
January 2025
School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
The exogenous application of RNAi technology offers new promises for crops improvement. Cell-based or synthetically produced strands are economical, non-transgenic and could induce the same responses. The substantial population growth demands novel strategies to produce crops without further damaging the environment.
View Article and Find Full Text PDFSensors (Basel)
January 2025
United States Department of Agriculture-Agriculture Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA.
Efficient and reliable corn ( L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers.
View Article and Find Full Text PDFMolecules
January 2025
Enviro Ecosmart SME, 189 Tecuci Street, 800552 Galati, Romania.
This study evaluates the effectiveness of Total Reflection X-ray Fluorescence for multi-element analysis in mussels, focusing on sensitivity, precision, and detection limits. Additionally, it offers a cross-regional comparison of elemental composition in mussels from aquaculture farms in Italy, Spain, and Chile. TXRF, using suspensions of mussel samples, proved effective in detecting minor and trace elements, with recovery rates over 80% for Fe, Cu, Zn, As, and Sr.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Key Laboratory of Smart Farm Technologies and Systems, Northeast Agricultural University, Harbin 150030, China.
Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!