Mechanisms underlying neuropathic pain (NP) are complex with multiple genes, their interactions, environmental and epigenetic factors being implicated. Transcriptional changes in the trigeminal (TG) and dorsal root (DRG) ganglia have been implicated in the development and maintenance of NP. Despite efforts to unravel molecular mechanisms of NP, many remain unknown. Also, most of the studies focused on the spinal system. Although the spinal and trigeminal systems share some of the molecular mechanisms, differences exist. We used RNA-sequencing technology to identify differentially expressed genes (DEGs) in the TG and DRG at baseline and 3 time points following the infraorbital or sciatic nerve injuries, respectively. Pathway analysis and comparison analysis were performed to identify differentially expressed pathways. Additionally, upstream regulator effects were investigated in the two systems. DEG (differentially expressed genes) analyses identified 3,225 genes to be differentially expressed between TG and DRG in naïve animals, 1,828 genes 4 days post injury, 5,644 at day 8 and 9,777 DEGs at 21 days postinjury. A comparison of top enriched canonical pathways revealed that a number of signaling pathway was significantly inhibited in the TG and activated in the DRG at 21 days postinjury. Finally, CORT upstream regulator was predicted to be inhibited in the TG while expression levels of the CSF1 upstream regulator were significantly elevated in the DRG at 21 days postinjury. This study provides a basis for further in-depth studies investigating transcriptional changes, pathways, and upstream regulation in TG and DRG in rats exposed to peripheral nerve injuries. PERSPECTIVE: Although trigeminal and dorsal root ganglia are homologs of each other, they respond differently to nerve injury and therefore treatment. Activation/inhibition of number of biological pathways appear to be ganglion/system specific suggesting that different approaches might be required to successfully treat neuropathies induced by injuries in spinal and trigeminal systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpain.2023.07.024DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
dorsal root
12
upstream regulator
12
days postinjury
12
changes trigeminal
8
root ganglia
8
rats exposed
8
nerve injury
8
transcriptional changes
8
trigeminal dorsal
8

Similar Publications

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Functional Verification of Differentially Expressed Genes Following DENV2 Infection in .

Viruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.

The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.

View Article and Find Full Text PDF

: The mechanism of polysaccharide-based nanocarriers in enhancing photodynamic immunotherapy in colorectal cancer (CRC) remains poorly understood. : The effects of TPA-3BCP-loaded cholesteryl hemisuccinate- polysaccharide nanoparticles (DOP@3BCP NPs) and their potential molecular mechanism of action in a tumor-bearing mouse model of CRC were investigated using non-targeted metabolomics and transcriptomics. Meanwhile, a histopathological analysis (H&E staining, Ki67 staining, and TUNEL assay) and a qRT-PCR analysis revealed the antitumor effects of DOP@3BCP NPs with and without light activation.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!