Revealing the roles of chemical communication in restoring the formation and electroactivity of electrogenic biofilm under electrical signaling disruption.

Water Res

School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China. Electronic address:

Published: September 2023

Electrogenic biofilms in microbial electrochemical systems have played significant roles in simultaneous wastewater treatment and energy recovery owing to their unique extracellular electron transfer. Their formation has been shown to be regulated by electrical and chemical communication, but the interaction between these signal communication pathways has not been studied. This research investigated the coordination between intracellular c-di-GMP signaling and reinforced quorum sensing with or without exogenous HSL (a common quorum sensing molecule), on the formation of mixed-cultured electrogenic biofilm under electrical signaling disruption by tetraethylammonium (TEA, a broad-range potassium channel blocker). Intracellular c-di-GMP was spontaneously reinforced in response to TEA stress, and metagenomic analysis revealed that the dominant DGC (the genes for producing c-di-GMP) induced the eventual biofilm formation by mediating exopolysaccharide synthesis. Meanwhile, reinforced quorum sensing by exogenous HSL could also benefit the biofilm restoration, however, it alleviated the TEA-induced communication stress, resulting in the weakening of c-di-GMP dominance. Interestingly, suppressing electrical communication with or without HSL addition both induced selective enrichment of Geobacter of 85.5% or 30.1% respectively. Functional contribution analysis revealed the significant roles of Geobacter and Thauera in c-di-GMP signaling, especially Thauera in resistance to TEA stress. This study proposed a potential strategy for electrogenic biofilm regulation from the perspectives of cell-to-cell communication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120421DOI Listing

Publication Analysis

Top Keywords

electrogenic biofilm
12
quorum sensing
12
chemical communication
8
biofilm electrical
8
electrical signaling
8
signaling disruption
8
intracellular c-di-gmp
8
c-di-gmp signaling
8
reinforced quorum
8
sensing exogenous
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!