Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Boron neutron capture therapy (BNCT) is a promising cancer treatment that uses energetic ions released from B(n, α)Li reactions. Accurate assessment of neutron energy spectra is important for simulation-based evaluation of neutron doses during BNCT. In this study, a proof-of-concept study was conducted for a neutron spectrometry technique that involves the use of a water phantom, which is commonly used for quality assurance in BNCT, as a moderator. The technique involves applying unfolding to the count rate distribution of the thermal neutron counter measured within the phantom to derive the energy spectrum. We performed experiments using a spherical He proportional counter in neutron fields generated by Cf and Am-Be sources. The results demonstrated that the spectrometer reasonably reproduced neutron spectra and showed the potential of using a water phantom as a moderator for such a technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2023.110952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!