Bioreducible Gene Delivery Platform that Promotes Intracellular Payload Release and Widespread Brain Dispersion.

ACS Biomater Sci Eng

Center for Nanomedicine at Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States.

Published: August 2023

We here introduce a novel bioreducible polymer-based gene delivery platform enabling widespread transgene expression in multiple brain regions with therapeutic relevance following intracranial convection-enhanced delivery. Our bioreducible nanoparticles provide markedly enhanced gene delivery efficacy and compared to nonbiodegradable nanoparticles primarily due to the ability to release gene payloads preferentially inside cells. Remarkably, our platform exhibits competitive gene delivery efficacy in a neuron-rich brain region compared to a viral vector under previous and current clinical investigations with demonstrated positive outcomes. Thus, our platform may serve as an attractive alternative for the intracranial gene therapy of neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.3c00799DOI Listing

Publication Analysis

Top Keywords

gene delivery
16
delivery platform
8
delivery efficacy
8
delivery
5
gene
5
bioreducible gene
4
platform
4
platform promotes
4
promotes intracellular
4
intracellular payload
4

Similar Publications

Prime editing has gained significant attention as a next-generation gene editing technology, owing to its unique advantages. However, realizing its potential requires effective delivery strategies. While adeno-associated virus (AAV) has been employed for delivery of prime editors in research settings, it presents inherent limitations related to vector size, ongoing expression, and inability to re-dose patients.

View Article and Find Full Text PDF

Gene therapy targeting ischemic heart disease is a promising therapeutic avenue, but it is mostly restricted to viral-based delivery approaches which are limited due to off-target immunological responses. Focused ultrasound presents a non-viral, image-guided technique in which circulating intravascular microbubble contrast agents can reversibly enhance vascular permeability and gene penetration. Here, we explore the influence of flow rate on the microbubble-assisted delivery of miR-126, a potent pro-angiogenic biologic, using a custom acoustically coupled pressurized mesenteric artery model.

View Article and Find Full Text PDF

Background: The early colonization and establishment of the microbiome in newborns is a crucial step in the development of the immune system and host metabolism. However, the exact timing of initial microbial colonization remains a subject of ongoing debate. While numerous studies have attempted to determine the presence or absence of intrauterine bacteria, the majority of them have drawn conclusions based on sequencing data from maternal or infant samples taken at a single time point.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Screening of Retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling.

Exp Eye Res

January 2025

Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China. Electronic address:

Due to its unique physiological structure and functions, the eye has received considerable attention in the field of Adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!