This study characterized variations in the methylation profile of mitochondrial DNA (mtDNA) during initial bovine embryo development and correlated the presence of methylation with mtDNA transcription. Bovine oocytes were obtained from abattoir ovaries and submitted to culture procedures. Oocytes and embryos were collected at various stages (immature oocyte, IM; mature oocyte, MII; zygote, ZY; 4-cells, 4C; 16-cells, 16C and blastocysts, BL). Total DNA (including mtDNA) was used for Whole Genome Enzymatic Methyl Sequencing and for quantification of mtDNA copy number. Extracted RNA was used for quantification of mitochondrial transcripts using Droplet Digital PCR. We selected ND6, CYTB, tRNA-Phe and tRNA-Gln based on their location in the mitochondrial genome, functionality and/or previous literature associating these regions with cytosine methylation. The number of mtDNA copies per oocyte/embryo was found to be similar, while methylation levels in mtDNA varied among stages. Higher total methylation levels were found mainly at 4C and 16C. In specific gene regions, higher methylation levels were also observed at 4C and 16C (ND6, CYTB and tRNA-Phe), as well as an inverse correlation with the quantity of transcripts for these regions. This is a first description of epigenetic changes occurring in mtDNA during early embryonic development. Our results indicate that methylation might regulate the mtDNA transcription at a local level, particularly around the time of embryonic genome activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392754 | PMC |
http://dx.doi.org/10.1080/15592294.2023.2241010 | DOI Listing |
Alzheimers Dement
December 2024
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
Background: We identified small molecule tricyclic pyrone compound CP2 as a mild mitochondrial complex I (MCI) inhibitor that induces neuroprotection in multiple mouse models of AD. One of the major concerns while targeting mitochondria is the production of reactive oxygen species (ROS). CP2 consists of two diastereoisomers, D1 and D2, with distinct activity and toxicity profiles.
View Article and Find Full Text PDFBackground: There are no cures for Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by elevation of beta-amyloid and tau proteins besides neuronal death and causing cognitive impairment. Phosphodiesterase 5 (PDE5) is a cyclic guanosine monophosphate-degrading enzyme involved in numerous biological pathways including those relevant to memory formation. PDE5 inhibition offers the potential to attenuate AD progression by acting at the downstream level of beta-amyloid and tau elevation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of the Balearic Islands, Palma de Mallorca, Spain.
Background: Reactive astrocytes and neuron death by excitotoxicity are observed in Alzheimer's disease (AD). DHA-H (2-hydroxy-docosahexaenoic acid; 2-OH-C22:6 n-3) is a molecule under development that has demonstrated therapeutic efficacy in both cellular and 5xFAD mouse model of AD. DHA-H is metabolized through α-oxidation to yield HPA (Heneicosapentaenoic acid; C21:5 n-3).
View Article and Find Full Text PDFJ Cancer
January 2025
Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
Targeting cuproptosis is considered as a promising therapeutic strategy for the prevention of tumors. However, the potential role of cuproptosis and its related genes in clear cell renal cell carcinoma (ccRCC) remains elusive. The present study aims to explore the sensitivity of ccRCC to cuproptosis and its underlying mechanism.
View Article and Find Full Text PDFNat Genet
January 2025
Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain.
The advent of single-molecule, long-read sequencing (LRS) technologies by Oxford Nanopore Technologies and Pacific Biosciences has revolutionized genomics, transcriptomics and, more recently, epigenomics research. These technologies offer distinct advantages, including the direct detection of methylated DNA and simultaneous assessment of DNA sequences spanning multiple kilobases along with their modifications at the single-molecule level. This has enabled the development of new assays for analyzing chromatin states and made it possible to integrate data for DNA methylation, chromatin accessibility, transcription factor binding and histone modifications, thereby facilitating comprehensive epigenomic profiling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!