The complex and heterogeneous nature of the lignin macromolecule has presented a lasting barrier to its utilization. To achieve high lignin yield, the technical lignin extraction process usually severely modifies and condenses the native structure of lignin, which is a critical drawback for its utilization in conversion processes. In addition, there is no method capable of separating lignin from plant biomass with controlled structural properties. Here, we developed an N-heterocycle-based deep eutectic solvent formed between lactic acid and pyrazole (La-Py DES) with a binary hydrogen bonding functionality resulting in a high affinity toward lignin. Up to 93.7% of lignin was extracted from wheat straw biomass at varying conditions from 90 °C to 145 °C. Through careful selection of treatment conditions as well as lactic acid to pyrazole ratios, lignin with controlled levels of ether linkage content, hydroxyl group content, and average molecular weight can be generated. Under mild extraction conditions (90 °C to 120 °C), light-colored native-like lignin can be produced with up to 80% yield, whereas ether linkage-free lignin with low polydispersity can be obtained at 145 °C. Overall, this study offers a new strategy for native lignin extraction and generating lignin with controlled structural properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410741 | PMC |
http://dx.doi.org/10.1073/pnas.2307323120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!