To date, no study has explored the extent to which genetic susceptibility modifies the effects of air pollutants on the risk of atrial fibrillation (AF). This study was designed to investigate the separate and joint effects of long-term exposure to air pollutants and genetic susceptibility on the risk of AF events. This study included 401,251 participants without AF at baseline from UK Biobank. We constructed a polygenic risk score and categorized it into three categories. Cox proportional hazards models were fitted to assess the separate and joint effects of long-term exposure to air pollutants and genetics on the risk of AF. Additionally, we further evaluated the effect modification of genetic susceptibility. The hazard ratios and corresponding 95% confidence intervals of incident AF for per interquartile range increase in particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM) or 10 µm (PM), nitrogen dioxide (NO), and nitrogen oxide (NO) were 1.044 (1.025, 1.063), 1.063 (1.044, 1.083), 1.061 (1.042, 1.081), and 1.039 (1.023, 1.055), respectively. For the combined effects, participants exposed to high air pollutants levels and high genetic risk had approximately 149.2% (PM), 181.7% (PM), 170.2% (NO), and 157.2% (NO) higher risk of AF compared to those with low air pollutants levels and low genetic risk, respectively. Moreover, the significant additive interactions between PM and NO and genetic risk on AF risk were observed, with around 16.4% and 35.1% of AF risk could be attributable to the interactive effects. In conclusion, long-term exposure to air pollutants increases the risk of AF, particularly among individuals with high genetic susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410743PMC
http://dx.doi.org/10.1073/pnas.2302708120DOI Listing

Publication Analysis

Top Keywords

air pollutants
24
genetic susceptibility
20
risk
12
long-term exposure
12
exposure air
12
genetic risk
12
genetic
8
susceptibility risk
8
risk atrial
8
atrial fibrillation
8

Similar Publications

Nitrogen dioxide (NO) and particulate matter of 2.5 microns (PM) are air pollutants that impact health, especially among vulnerable populations with respiratory disease. This study identifies factors influencing indoor NO and PM in low-income households of older adults with asthma who use gas stoves in Lowell, Massachusetts.

View Article and Find Full Text PDF

PM Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner.

Toxics

December 2024

Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.

As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.

View Article and Find Full Text PDF

Air pollutants have both acute and chronic impacts on human health, affecting multiple systems and organs. While PM2.5 exposure is commonly assumed to be strongly associated with all respiratory diseases, this relationship has not been systematically analyzed.

View Article and Find Full Text PDF

Since automobiles are the primary means of transportation in modern society, the assessment of health effects from acute and chronic exposure to pollutants in automobiles is crucial. In this study, the concentration of volatile organic compounds (VOCs), carbonyl compounds, and odor-including substances in newly manufactured automobiles were analyzed, and exposure factors reflecting automobile user characteristics were selected for health risk assessment. Toluene exhibited the highest concentration (203.

View Article and Find Full Text PDF

Background/objective: The relationship between food consumption and environmental sustainability is becoming increasingly evident. The aim of this study was to estimate the evolution of the environmental impact of food consumption in the Spanish population, assessed in terms of greenhouse gas (GHG) emissions.

Methods: Data collected from the Household Budget Survey were included, from approximately 24,000 households for the period of 2006-2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!