AI Article Synopsis

  • Time-resolved, angle-resolved photoemission spectroscopy (TR-ARPES) is a technique used to examine excitons within momentum space, providing insights into their behavior over time.
  • The study introduces a time-domain GW approach to TR-ARPES, specifically applied to monolayer MoS, revealing that photoexcited excitons manifest as satellite bands that alter the quasiparticle bands.
  • The research highlights the strong exciton-Floquet phenomenon induced by a time-dependent bosonic field, suggesting potential methods for engineering Floquet matter and modifying band structures in low-dimensional semiconductors.

Article Abstract

Time-resolved, angle-resolved photoemission spectroscopy (TR-ARPES) is a one-particle spectroscopic technique that can probe excitons (two-particle excitations) in momentum space. We present an ab initio, time-domain GW approach to TR-ARPES and apply it to monolayer MoS. We show that photoexcited excitons may be measured and quantified as satellite bands and lead to the renormalization of the quasiparticle bands. These features are explained in terms of an exciton-Floquet phenomenon induced by an exciton time-dependent bosonic field, which are orders of magnitude stronger than those of laser field-induced Floquet bands in low-dimensional semiconductors. Our findings imply a way to engineer Floquet matter through the coherent oscillation of excitons and open the new door for mechanisms for band structure engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410765PMC
http://dx.doi.org/10.1073/pnas.2301957120DOI Listing

Publication Analysis

Top Keywords

photoemission spectroscopy
8
giant self-driven
4
self-driven exciton-floquet
4
exciton-floquet signatures
4
signatures time-resolved
4
time-resolved photoemission
4
spectroscopy mos
4
mos time-dependent
4
time-dependent approach
4
approach time-resolved
4

Similar Publications

CO Adsorption on a Single-Atom Catalyst Stably Embedded in Graphene.

Angew Chem Int Ed Engl

January 2025

Università di Milano-Bicocca, Dipartimento di Scienza dei Materiali, via Cozzi 55, 20125, Milano, ITALY.

Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear. In this work, through a combined density functional theory and experimental surface science study, we address this question by investigating Co and Ni single atoms embedded in graphene (Gr) on a Ni(111) support.

View Article and Find Full Text PDF

Ultrathin atomic layer deposited ceria films (< 20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10%. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

In our work, we report superior electrochemical performance of optimized 3D nanostructured, nickel-cobalt carbonate hydroxide hydrate (NiCo-CHH (1 ≤ x ≤ 2)) materials with flower like morphology synthesised via one-step hydrothermal methods. A Ni rich sample (x = 1) demonstrate better specific capacitance and the improvement is attributed to more oxygen deficient neighbourhood of Ni compared to that of Co. The structural, morphological and electronic properties of the samples were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), field emission electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!