Enhancing Ultrasound-Assisted Iodine-Mediated Reversible-Deactivation Radical Polymerization by Piezoelectric Nanoparticles.

ACS Macro Lett

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Published: August 2023

The development of mechanochemical tools for regulating the polymerization process has received an increasing amount of attention in recent years. Herein, we report the example of the mechanically controlled iodine-mediated reversible-deactivation radical polymerization (mechano-RDRP) using piezoelectric tetragonal BaTiO nanoparticles (T-BTO) as mechanoredox catalyst and alkyl iodide as the initiator. We demonstrated a more efficient mechanochemical initiation and reversible deactivation process than sonochemical activation via a mechanoredox-mediated alkyl iodide cleavage reaction. The mechanochemical activation of the C-I bond was verified by density functional theory (DFT) calculations. Theoretical calculations together with experimental results confirmed the more efficient initiation and polymerization than the traditional sonochemical approach. The influence of BaTiO, initiator, and solvent was further examined to reveal the mechanism of the mechano-RDRP. The results showed good controllability over molecular weight and capacity for a one-pot chain extension. This work expands the scope of mechanically controlled polymerization and shows good potential in the construction of adaptive materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.3c00317DOI Listing

Publication Analysis

Top Keywords

iodine-mediated reversible-deactivation
8
reversible-deactivation radical
8
radical polymerization
8
mechanically controlled
8
alkyl iodide
8
polymerization
5
enhancing ultrasound-assisted
4
ultrasound-assisted iodine-mediated
4
polymerization piezoelectric
4
piezoelectric nanoparticles
4

Similar Publications

Enhancing Ultrasound-Assisted Iodine-Mediated Reversible-Deactivation Radical Polymerization by Piezoelectric Nanoparticles.

ACS Macro Lett

August 2023

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

The development of mechanochemical tools for regulating the polymerization process has received an increasing amount of attention in recent years. Herein, we report the example of the mechanically controlled iodine-mediated reversible-deactivation radical polymerization (mechano-RDRP) using piezoelectric tetragonal BaTiO nanoparticles (T-BTO) as mechanoredox catalyst and alkyl iodide as the initiator. We demonstrated a more efficient mechanochemical initiation and reversible deactivation process than sonochemical activation via a mechanoredox-mediated alkyl iodide cleavage reaction.

View Article and Find Full Text PDF

Photocontrolled Iodine-Mediated Reversible-Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light.

Angew Chem Int Ed Engl

March 2020

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.

Herein, near-infrared (NIR) photocontrolled iodide-mediated reversible-deactivation radical polymerization (RDRP) of methacrylates, without an external photocatalyst, was developed using an alkyl iodide (e.g., 2-iodo-2-methylpropionitrile) as the initiator at room temperature.

View Article and Find Full Text PDF

Photocontrolled Iodine-Mediated Green Reversible-Deactivation Radical Polymerization of Methacrylates: Effect of Water in the Polymerization System.

ACS Macro Lett

November 2019

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Photocontrolled iodine-mediated reversible-deactivation radical polymerization (RDRP) is a facile and highly efficient access to precision polymers. Herein, a facile photocontrolled iodine-mediated green RDRP strategy was successfully established in water by using 2-iodo-2-methylpropionitrile (CP-I) as the initiator and water-soluble functional monomers including poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), and 2-hydroxypropyl methacrylate (HPMA) as the model monomers under blue-light-emitting diode (LED) irradiation at room temperature. Well-defined polymers (PPEGMA, PHEMA, PHPMA) with narrow polydispersities (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!