Viruses belonging to the family Dicistroviridae have a monopartite positive-sense single-stranded RNA genome and infect a variety of arthropods. Using high-throughput sequencing, we detected a novel dicistro-like virus, tentatively named "tomato root-associated dicistro-like virus" (TRaDLV), in the roots of tomato plants showing yellow mosaic symptoms on the leaves. The diseased tomato plants were coinfected with multiple plant viruses, and TRaDLV was present in the roots but not in the leaves. The genome of TRaDLV is 8726 nucleotides in length, excluding the poly(A) tail, and contains two open reading frames (ORFs) separated by an intergenic region (IGR). The TRaDLV genome showed characteristics similar to those of dicistroviruses, including the presence of a 3C-like protease domain, repeated amino acid sequences representing multiple copies of viral genome-linked protein (VPg)-like sequences in the ORF1 polyprotein, and a series of stem-loop structures resembling an internal ribosome entry site in the IGR. Phylogenetic analysis revealed that TRaDLV clustered with unclassified dicistro-like viruses from invertebrates or identified in samples of plant-derived material. These findings indicate the existence of a novel dicistro-like virus that may associate with plant roots or a root-inhabiting organism.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-023-05843-1DOI Listing

Publication Analysis

Top Keywords

novel dicistro-like
12
dicistro-like virus
12
tomato plants
12
roots tomato
8
tradlv roots
8
dicistro-like
5
tradlv
5
identification novel
4
virus associated
4
roots
4

Similar Publications

Diversity of Picorna-Like Viruses in the Teltow Canal, Berlin, Germany.

Viruses

June 2024

Section II 1.4 Microbiological Risks, Department of Environmental Hygiene, German Environment Agency, 14195 Berlin, Germany.

The viromes of freshwater bodies are underexplored. The order, with 371 acknowledged species, is one of the most expansive and diverse groups of eukaryotic RNA viruses. In this study, we add 513 picorna-like viruses to the assemblage of more than 2000 unassigned picorna-like viruses.

View Article and Find Full Text PDF

European native crayfish populations are undergoing a strong decline due to environmental factors and the introduction of highly competitive non-native species. Pathogens are an additional threat to native crayfish. However, aside from the crayfish plague, other infectious diseases are still widely unknown.

View Article and Find Full Text PDF

Viruses belonging to the family Dicistroviridae have a monopartite positive-sense single-stranded RNA genome and infect a variety of arthropods. Using high-throughput sequencing, we detected a novel dicistro-like virus, tentatively named "tomato root-associated dicistro-like virus" (TRaDLV), in the roots of tomato plants showing yellow mosaic symptoms on the leaves. The diseased tomato plants were coinfected with multiple plant viruses, and TRaDLV was present in the roots but not in the leaves.

View Article and Find Full Text PDF

Dicistroviruses (the family Dicistroviridae) are positive-sense single-stranded RNA viruses of the order Picornavirales, which is a rapidly growing viral group. They have been detected in a wide range of animals, predominantly in insects and crustaceans. In this study, we identified the genome sequences of 14 dicistro-like viruses in the transcriptome data from 12 plant species, including Striga asiatica dicistro-like virus 1 and 2 identified in the transcriptome data of Striga asiatica.

View Article and Find Full Text PDF

Native Australian soldier flies, Inopus spp. (Diptera: Stratiomyidae), are agricultural pests of economic importance to the sugarcane industry. A screen of the salivary gland transcriptome of Inopus flavus (James) revealed the presence of viral RNA belonging to a potentially novel member of the family Dicistroviridae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!