Nanofertilizers could promote nutrient efficiency with slow release compared to conventional fertilizers (CF). Most of the applied nitrogen is lost on the soil by leaching, due to the rapid release behavior of CF. Clays can function as a nanosized porous structure to retain and slowly release nutrients. The objective of this study was to evaluate a nitrogenous nanocomposite (NCN) and its effect on leaching and N content of lettuce (Lactuca sativa). The treatments applied were: 100% conventional fertilizer, 100% nitrogenous nanocomposite and the mixture in percentage of CF/NCN 25/75, 50/50, 75/25 and 25/0, 50/0 75/0% on columns of soil with lettuce for 45 days. Leachates at the end of the cycle increased in treatments with NCN. Treatments with NCN have higher N content in the leaf. In regard to biomass growth, leaf area, leaf N, drained variables, electrical conductivity and NO content, it was possible to show that the doses of 50 and 75% of NCN match the characteristics of the crop compared to the control, which allows us to use lower doses than those recommended with CFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390445 | PMC |
http://dx.doi.org/10.1186/s11671-023-03874-w | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFFood Chem
January 2025
Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.
View Article and Find Full Text PDFNanotechnology
January 2025
Qingdao University, Ningxia Road 308, Qingdao, Shandong, 266071, CHINA.
Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.
As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
In this work, NiMnO/TiO-CeO (Ce = 1.15, 2.5, 5, 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!