The SARS-CoV-2 pandemic has resulted in the infection and death of many South Africans. This is in part due to a lack of testing facilities, equipment, and staff in many areas, particularly those with low population densities. The study focused on the infection dynamics of the virus in the Northern Cape province in all five municipalities investigating wastewater-based surveillance for the province. Reverse transcription was used to identify the virus, and SARS-CoV-2 RNA was detected in a batch of wastewater from four of the five areas sampled and was collected in the months that fall within the third wave of COVID as well as the winter season (May-July). The detection of the SARS-CoV-2 RNA correlated with infection statistics as well as the seasonality of the virus. This research showed a positive result in using wastewater epidemiology to track the spread of the virus but also highlighted the need for improved methodology when it comes to this surveillance. This includes sampling smaller areas and frequent sampling in multiple areas to show clear patterns within smaller, sparsely populated communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2023.197 | DOI Listing |
Anal Chim Acta
January 2025
State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, 266237, China. Electronic address:
Background: The COVID-19 pandemic has significantly affected global health, economies, and societies, and highlighted the urgent need for rapid, sensitive, affordable, and portable diagnostic devices for respiratory diseases, especially in areas with limited resources. In recent years, there has been rapid development in integrated equipments using microfluidic chips and biochemical detection technologies. However, these devices are expensive and complex to operate, showing limited feasibility for in point of care tests (PoCTs).
View Article and Find Full Text PDFSTAR Protoc
January 2025
Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Intracellular microorganisms like viruses and bacteria impact immune cell function. However, detection of these microbes is challenging as the majority exist in a non-culturable state. This protocol presents detailed steps to investigate intracellular microbial diversity using single-cell RNA sequencing (scRNA-seq) in immune-cells of SARS-CoV-2-positive and recovered patients.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD), the most common type of dementia, affects at least twenty-four million people globally, yet, the causation, mechanisms of progression, and therapeutic strategies remain elusive. Currently, tRNA-derived RNA fragments (tRFs), a family of recently discovered small non-coding RNAs (sncRNAs), have surfaced as promising biomarkers for many diseases, including AD. Our work revealed that several AD-impacted tRFs in human hippocampus, CSF, and serum.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tulane University, New Orleans, LA, USA.
Background: Vascular dementia (VaD), the second most common cause of dementia, is characterized by cognitive decline due to reduced cerebral blood flow and blood-brain barrier disruption. Current evidence demonstrates that not only are VaD patients at higher risk of severe COVID-19 illness and mortality, but also that pre-existing cognitive dysfunction/dementia is associated with increased COVID-19 incidence. Conversely, SARS-CoV-2 infection alone worsens dementia-related mild cognitive impairment (MCI) and increases risk of cognitive decline, supported by similar fMRI findings demonstrating hypoperfusion.
View Article and Find Full Text PDFClin Exp Immunol
January 2025
Translational Biomedical Sciences Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
Introduction: The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!