In this paper we present a new reactive transport code for the efficient simulation of groundwater quality problems. The new code couples the two previously existing tools OpenFoam and PhreeqcRM. The major objective of the development was to transfer and expand the capabilities of the MODFLOW/MT3DMS-family of codes, especially their outstanding ability to suppress numerical dispersion, to a versatile and computationally efficient code for unstructured grids. Owing to the numerous, previously existing transport solvers contained in OpenFoam, the newly developed code achieves this objective and provides a solid basis for future expansions of the code capabilities. The flexibility of the OpenFoam framework is illustrated by the addition of diffusional processes for gaseous compounds in the unsaturated zone and the advection of gases (multiphase transport). The code capabilities and accuracy are illustrated through several examples: (1) a simple 2D case for conservative solute transport under saturated conditions, (2) a gas diffusion case with reactions in the unsaturated zone, (3) a hydrogeologically complex 3D reactive transport problem, and finally (4) the injection of CO into a deep aquifer with acidification being buffered by carbonate minerals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gwat.13345 | DOI Listing |
J Physiol
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, Uppsala SE-75120, Sweden.
[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.
View Article and Find Full Text PDFChem Sci
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University College Station TX 77843 USA
This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.
View Article and Find Full Text PDFJ Transl Autoimmun
June 2025
Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran.
Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Physiology, China Medical University, Taichung, 404328, Taiwan.
Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!