Probable Evidence of Aerosol Transmission of SARS-COV-2 in a COVID-19 Outbreak of a High-Rise Building.

Environ Health Insights

Chengdu Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Science, Chengdu, China.

Published: July 2023

Although it is well established that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through aerosols, the mode of long-range aerosol transmission in high-rise buildings remains unclear. In this study, we analyzed an outbreak of coronavirus disease 2019 (COVID-19) that occurred in a high-rise building in China. Our objective was to investigate the plausibility of aerosol transmission of SARS-CoV-2 by testing relevant environmental variables and measuring the dispersion of a tracer gas in the drainage system of the building. The outbreak involved 7 infected families, of which 6 were from vertically aligned flats on different floors. Environmenìtal data revealed that 3 families' bathrooms were contaminated by SARS-CoV-2. In our tracer experiment, we injected tracer gas (CO) into the dry floor drains and into water-filled toilets in the index case' s bathroom. Our findings showed that the gas could travel through vertical pipes by the dry floor drains, but not through the water of the toilets. This indicates that dry floor drains might facilitate the transmission of viral aerosols through the sewage system. On the basis of circumstantial evidence, long-range aerosol transmission may have contributed to the community outbreak of COVID-19 in this high-rise building. The vertical transmission of diseases through aerosols in high-rise buildings demands urgent attention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372516PMC
http://dx.doi.org/10.1177/11786302231188269DOI Listing

Publication Analysis

Top Keywords

aerosol transmission
16
high-rise building
12
dry floor
12
floor drains
12
transmission sars-cov-2
8
long-range aerosol
8
high-rise buildings
8
tracer gas
8
transmission
6
high-rise
5

Similar Publications

Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.

Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.

View Article and Find Full Text PDF

In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.

View Article and Find Full Text PDF

Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell.

View Article and Find Full Text PDF

Assessment of COVID-19 incidence after performing pulmonary function tests during the pandemic: Findings from a real-life cohort.

Heart Lung

January 2025

Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul - Rua Ramiro Barcelos, 2350, Sala 2050, CEP 90035-003, Porto Alegre, RS, Brazil; Unidade de Fisiologia Pulmonar, Hospital de Clínicas de Porto Alegre - Rua Ramiro Barcelos, 2350, Sala 2050, CEP 90035-003, Porto Alegre, RS, Brazil.

Background: Pulmonary function testing (PFT) is paramount in assessing patients with respiratory symptoms and chronic cardiopulmonary diseases. Although seminal studies have demonstrated that PFT generates aerosols, this simple observation does not confirm the potential for enhanced pathogen transmission.

Objective: We aimed to describe the frequency of patients who developed suspected symptoms of COVID-19, prompting SARS-CoV-2 testing after undergoing PFT during the reopening of a laboratory amid the deceleration of the pandemic.

View Article and Find Full Text PDF

With the emergence of COVID-19 variants and new viruses, it remains uncertain when the next pandemic will occur. A lockdown is considered the last resort to halt the spread of infection; however, it causes significant economic and social damage. Therefore, exploring less harmful alternatives during such scenarios is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!