Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multicomponent inorganic compounds containing post-transition-metal cations such as Sn, Pb, and Bi are a promising class of photocatalysts, but their structure-property relationships remain difficult to decipher. Here, we report three novel bismuth-based layered oxyiodides, the Sillén-Aurivillius phase BiNbOI, BiBaTiOI, and BiNbWOI. We show that the interlayer Bi-Bi interaction is a key to controlling the electronic structure. The replacement of the halide layer from Cl to I negatively shifts not only the valence band but also the conduction band, thus providing lower electron affinity without sacrificing photoabsorption. The suppressed interlayer chemical interaction between the 6p orbitals of the Bi lone-pair cations reduces the conduction bandwidth. These oxyiodides have narrower band gaps and show much higher water oxidation activities under visible light than their chloride counterparts. The design strategy has not only provided three novel Bi-based photocatalysts for water splitting but also offers a pathway to control the optoelectronic properties of a wider class of lone-pair (nsnp) semiconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373439 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.3c00932 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!