This paper presents an optimal design of a large-capacity Magnetorheological (MR) damper suitable for off-road vehicle applications. The damper includes an MR fluid bypass valve with both annular and radial gaps to generate a large damping force and dynamic range. An analytical model of the proposed damper is formulated based on the Bingham plastic model of MR fluids. To establish a relationship between the applied current and magnetic flux density in the MR fluid active regions, an analytical magnetic circuit is formulated and further compared with a magnetic finite element model. The MR valve geometrical parameters are subsequently optimized to maximize the damper dynamic range under specific volume and magnetic field constraints. The optimized MR valve can theoretically generate off-state and on-state damping forces of 1.1 and 7.41 kN, respectively at 12.5 mm/s damper piston velocity. The proposed damper has been also designed to allow a large piston stroke of 180 mm. The proof-of-concept of the optimally designed MR damper was subsequently fabricated and experimentally characterized to investigate its performance and validate the models. The results show that the proposed MR damper is able to provide large damping forces with a high dynamic range under different excitation conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375004 | PMC |
http://dx.doi.org/10.1177/1045389X221151075 | DOI Listing |
BMC Sports Sci Med Rehabil
January 2025
Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, Wiener Neustadt, 2700, Austria.
Background: Isokinetic dynamometry is a common tool for evaluating muscle function and is used across various disciplines. Technical advancements have shifted focus towards multi-joint exercises such as the leg press, offering insights into practical human movement dynamics. However, previous reproducibility studies have focused predominantly on single-joint exercises, warranting investigations into the reliability of multi-joint exercises.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Physics, University of Surrey, GU2 7XH, Guildford, United Kingdom.
Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open problem in many areas of physics, ranging from cosmology, to particle physics, to thermodynamics and statistical mechanics. Here we focus on the derivation of the arrow of time in open quantum systems and study precisely how time-reversal symmetry is broken. This derivation involves the Markov approximation applied to a system interacting with an infinite heat bath.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain. Electronic address:
Mediterranean streams contain substantial proportions of wastewater treatment plant effluent, occasionally constituting the entire water flow. Here, we analysed the seasonal occurrence of 23 antibiotics (AB) and antimicrobial resistance (AMR) by tracking 3 marker genes and bacterial community dynamics in two wastewater effluent-dominated streams. One stream was renaturalized with meanders and vegetation, while the other was linear and had a low vegetation density.
View Article and Find Full Text PDFJ Foot Ankle Surg
January 2025
Institute for Locomotion, Center for Arthritis Surgery, Sainte-Marguerite Hospital, Aix-Marseille University, 270 Boulevard de Sainte-Marguerite, 13009, Marseille, France.
The Flexor Hallucis Longus (FHL) is a muscle that can be subject to multiple conflicts. The most common conflict is due to inflammation of the tendon at the retrotalar pulley. The constraints exerted on the FHL are responsible for a pathology called functional Hallux Limitus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!