Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A cochlear implant (CI) is a neurotechnological device that restores total sensorineural hearing loss. It contains a sophisticated speech processor that analyzes and transforms the acoustic input. It distributes its time-enveloped spectral content to the auditory nerve as electrical pulsed stimulation trains of selected frequency channels on a multi-contact electrode that is surgically inserted in the cochlear duct. This remarkable brain interface enables the deaf to regain hearing and understand speech. However, tuning of the large (>50) number of parameters of the speech processor, so-called "device fitting," is a tedious and complex process, which is mainly carried out in the clinic through 'one-size-fits-all' procedures. Current fitting typically relies on limited and often subjective data that must be collected in limited time. Despite the success of the CI as a hearing-restoration device, variability in speech-recognition scores among users is still very large, and mostly unexplained. The major factors that underly this variability incorporate three levels: (i) variability in auditory-system of CI-users, (ii) variability in the of electrode-to-auditory nerve (EL-AN) activation, and (iii) lack of objective measures to optimize the fitting. We argue that variability in speech recognition can only be alleviated by using objective patient-specific data for an individualized fitting procedure, which incorporates knowledge from all three levels. In this paper, we propose a series of experiments, aimed at collecting a large amount of objective (i.e., quantitative, reproducible, and reliable) data that characterize the three processing levels of the user's auditory system. Machine-learning algorithms that process these data will eventually enable the clinician to derive reliable and personalized characteristics of the user's auditory system, the quality of EL-AN signal transfer, and predictions of the perceptual effects of changes in the current fitting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372492 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1183126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!