Non-alcoholic fatty liver disease (NAFLD) has become serious liver disease all over the world. At present, NAFLD caused by high calorie and fat diet is increasing. Calsyntenin-3 (Clstn3) is a transmembrane protein that has recently been found to participate in lipid energy metabolism. But whether Clstn3 affects NAFLD lipid metabolism has not been analyzed. We stimulate the mice primary hepatocytes (MPHs) with oleic acid and palmitic acid (OA&PA) to establish a cell model. Then, potential targets, including Clstn3 gene, were validated for improving lipid metabolism disorder in NAFLD model mice (HFD and db/db) by silencing and overexpressing hepatic Clstn3. Moreover, the effects of Clstn3 on lipid homeostasis were determined by functional determination, triglyceride (TG) levels, total cholesterol (TC) levels, ELISA, and qRT-PCR detection. Our results displayed that Clstn3 was decreased in the NAFLD mice model. Also, overexpression of Clstn3 improved lipid metabolism disorders, gluconeogenesis, and energy homeostasis and reduced liver injury, inflammation, and oxidative stress injury. However, opposite results were obtained in Clstn3-silencing mice, suggesting that the Clstn3 gene is closely related to lipid metabolism disorder in NAFLD. RNAseq expression demonstrated that Farnesoid X Receptor (FXR) expression was increased after overexpression of Clstn3. Clstn3 supplementation in FXRKO mice can improve the dysfunction caused by insufficient FXR, suggesting that Clstn3 can improve the NAFLD lipid metabolism disorder to some extent through FXR, which may provide a new method for the treatment of NAFLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373204 | PMC |
http://dx.doi.org/10.1021/acsomega.3c02347 | DOI Listing |
Genet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFFront Microbiol
December 2024
Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia.
Introduction: Lactic acid bacteria are prized for their probiotic benefits and gut health improvements. This study assessed five LAB isolates from Neera, with RAMULAB51 (, GenBank ON171686.1) standing out for its high hydrophobicity, auto-aggregation, antimicrobial activity, and enzyme inhibition.
View Article and Find Full Text PDFBackground: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.
Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.
B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).
View Article and Find Full Text PDFExposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!