A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oriented artificial niche provides physical-biochemical stimulations for rapid nerve regeneration. | LitMetric

Skin wound is always accompanied with nerve damage, leading to significant sensory function loss. Currently, the functional matrix material based stem cell transplantation and in situ nerve regeneration are thought to be effective strategies, of which, how to recruit stem cells, retard senescence, and promote neural differentiation has been obstacle to be overcome. However, the therapeutic efficiency of the reported systems has yet to be improved and side effect reduced. Herein, a conduit matrix with three-dimensional ordered porous structures, regular porosity, appropriate mechanical strength, and conductive features was prepared by orienting the freezing technique, which was further filled with neural-directing exosomes to form a neural-stimulating matrix for providing hybrid physical-biochemical stimulations. This neural-stimulating matrix was then compacted with methacrylate gelatin (GelMA) hydrogel thin coat that loaded with chemokines and anti-senescence drugs, forming a multi-functional artificial niche (termed as GCr-CSL) that promotes MSCs recruitment, anti-senescence, and neural differentiation. GCr-CSL was shown to rapidly enhances in situ nerve regeneration in skin wound therapy, and with great potential in promoting sensory function recovery. This study demonstrates proof-of-concept in building a biomimetic niche to organize endogenous MSCs recruitment, differentiation, and functionalization for fast neurological and sensory recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374615PMC
http://dx.doi.org/10.1016/j.mtbio.2023.100736DOI Listing

Publication Analysis

Top Keywords

nerve regeneration
12
artificial niche
8
physical-biochemical stimulations
8
regeneration skin
8
skin wound
8
sensory function
8
situ nerve
8
neural differentiation
8
neural-stimulating matrix
8
mscs recruitment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!