An effective cooling method with the proper selection of process parameters can intensify the machining performance by reducing the loss of resources with better quality products. In this regard, modelling is an appropriate way of predicting responses in changing environment and optimization is an efficient tool of selecting the best process parameters based on the specific desire. With a view to enhance the machinability of Ti-6Al-4V alloy, the first attempt of the current study was to predict the performance characteristics of milling such as cutting force (N), specific cutting energy (J/mm) and surface roughness (μm) with the variation of speed (m/min), feed (mm/min), depth of cut (mm) and cooling approach by developing mathematical models. For the present work, three different predictive models such as response surface methodology (RSM), artificial neural network (ANN), and adaptive neuro fuzzy inference system (ANFIS) was followed. Additionally, a comparative assessment of the used predictive models was carried out and ANFIS was noticed as the most accurate predictive model. After that, optimization of the selected responses was conducted by multiple-objective optimization on the basis of ratio analysis (MOORA) method where the relative weights of each response were defined by principal component analysis (PCA). For milling Ti-6Al-4V alloy within the specific boundary conditions, PCA-MOORA suggested an optimal parameter setting at 32 m/min speed, 22 mm/min feed rate, and 0.75 mm depth of cut with rotary high-pressure cooling. Finally, the sensitivity of the used MOORA method with the variation of unitary ratio was checked out to take a robust decision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382677 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18582 | DOI Listing |
J Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Energy Engineering, Dhaka University of Engineering & Technology, Gazipur, Bangladesh.
This study investigates the optimization of cutting conditions for machining titanium alloy (Ti-6Al-4V) using Response Surface Methodology (RSM), with the goal of minimizing tool-chip interface temperature and surface roughness. The research focuses on key cutting parameters to investigate the most effective combinations for enhancing surface finish and reducing thermal impact during machining. The present study deals with the dry turning of Ti-6Al-4V alloy with carbide alloy inserts in a way to utilize the Analysis of Variance (ANOVA) to develop predictive models for minimum surface roughness and optimum temperature.
View Article and Find Full Text PDFInt J Implant Dent
January 2025
School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Purpose: SLM 3D printing technology is one of the most widely used implant-making technologies. However, the surfaces of the implants are relatively rough, and bacteria can easily adhere to them; increasing the risk of postoperative infection. Therefore, we prepared a near-infrared photoresponsive nano-TiO coating on the surface of an SLM 3D-printed titanium alloy sheet (Ti6Al4V) via a hydrothermal method to evaluate its antibacterial properties and biocompatibility.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-103 Warszawa, Poland.
This paper presents the results of research on the kinetics of transformations in the two-phase (α + β) Ti-6Al-4V alloy. The transformation start and end temperatures during heating at different rates were determined using a dilatometer. A modified dilatometer was employed, equipped with an acoustic emission measurement apparatus and software enabling the assessment of sample dimensional changes during heating and cooling.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an, 710004, China.
The regulation of the charged microenvironment around implants is an effective way to promote osseointegration. Although homeostasis of the charged microenvironment plays an integral role in tissues, current research is externally invasive and unsuitable for clinical applications. In this study, functional materials with different surface potential differences are prepared by changing the spatial layout of Ta and Ag on the surface of a Ti-6Al-4V alloy (TC4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!