High-Throughput Single-Cell Analysis of Nanoparticle-Cell Interactions.

Trends Analyt Chem

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA.

Published: September 2023

Understanding nanoparticle-cell interactions at single-nanoparticle and single-cell resolutions is crucial to improving the design of next-generation nanoparticles for safer, more effective, and more efficient applications in nanomedicine. This review focuses on recent advances in the continuous high-throughput analysis of nanoparticle-cell interactions at the single-cell level. We highlight and discuss the current trends in continual flow high-throughput methods for analyzing single cells, such as advanced flow cytometry techniques and inductively coupled plasma mass spectrometry methods, as well as their intersection in the form of mass cytometry. This review further discusses the challenges and opportunities with current single-cell analysis approaches and provides proposed directions for innovation in the high-throughput analysis of nanoparticle-cell interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373476PMC
http://dx.doi.org/10.1016/j.trac.2023.117172DOI Listing

Publication Analysis

Top Keywords

nanoparticle-cell interactions
16
analysis nanoparticle-cell
12
single-cell analysis
8
high-throughput analysis
8
high-throughput
4
high-throughput single-cell
4
analysis
4
nanoparticle-cell
4
interactions
4
interactions understanding
4

Similar Publications

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Poly(lactide-co-glycolide) (PLG) nanoparticles loaded with doxorubicin have reached phase-I clinical trials for treating advanced solid tumors. This study explores cell hitchhiking, where nanoparticles associate with blood cells and investigates the impact on pharmacokinetics and tumor migration. Previous findings highlighted the early post-injection phase dominated by nonspecific nanoparticle-cell interactions and burst release.

View Article and Find Full Text PDF

Background: Raman tweezers spectroscopy (RTS) is a powerful tool that combines optical tweezers and Raman spectroscopy to study single living cells. RTS has become increasingly popular in biomedical and clinical research due to its high molecular specificity and sensitivity, which enable the study of cell viability, cell deformation, cell-protein, cell-nanoparticle, cell-cell interaction, etc. In transfusion medicine, RTS can give valuable insights into the storage lesions and effects of various preservatives and intravenous fluids on blood cells.

View Article and Find Full Text PDF

Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties.

J Nanobiotechnology

November 2024

Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New District, Shanghai, 201203, P R China.

Orally administered nanocarriers play an important role in improving druggability, promoting intestinal absorption, and enhancing therapeutic applications for the treatment of local and systemic diseases. However, the delivering efficiency and cell response in mucosa to orally administered nanocarriers is affected by the physiological environment and barriers in the gastrointestinal tract, the physicochemical properties of the nanocarriers, and their bidirectional interactions. Goblet cells secrete and form extracellular mucus, which hinders the movement of nanoparticles.

View Article and Find Full Text PDF

Neuronanomedicine is an emerging field bridging the gap between neuromedicine and novel nanotherapeutics. Despite promise, clinical translation of neuronanomedicine remains elusive, possibly due to a dearth of information regarding the effect of the protein corona on these neuronanomedicines. The protein corona, a layer of proteins adsorbed to nanoparticles following exposure to biological fluids, ultimately determines the fate of nanoparticles in biological systems, dictating nanoparticle-cell interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!