AI Article Synopsis

  • * Researchers analyzed blood stem cell behavior from individuals with healthy conditions, CHIP, and MDS using computational models and found that standard blood cell development patterns explained healthy cells, while alternative development patterns were necessary for many CHIP and MDS patients.
  • * The study indicated that changes in blood cell production kinetics are already apparent in the premalignant CHIP stage, suggesting that structural changes in blood cell production begin before the full development of malignancies like MDS.

Article Abstract

Clonal hematopoiesis of indeterminate potential (CHIP) describes the age-related acquisition of somatic mutations in hematopoietic stem/progenitor cells (HSPC) leading to clonal blood cell expansion. Although CHIP mutations drive myeloid malignancies like myelodysplastic syndromes (MDS) it is unknown if clonal expansion is attributable to changes in cell type kinetics, or involves reorganization of the hematopoietic hierarchy. Using computational modeling we analyzed differentiation and proliferation kinetics of cultured hematopoietic stem cells (HSC) from 8 healthy individuals, 7 CHIP, and 10 MDS patients. While the standard hematopoietic hierarchy explained HSPC kinetics in healthy samples, 57% of CHIP and 70% of MDS samples were best described with alternative hierarchies. Deregulated kinetics were found at various HSPC compartments with high inter-individual heterogeneity in CHIP and MDS, while altered HSC rates were most relevant in MDS. Quantifying kinetic heterogeneity in detail, we show that reorganization of the HSPC compartment is already detectable in the premalignant CHIP state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382887PMC
http://dx.doi.org/10.1016/j.isci.2023.107328DOI Listing

Publication Analysis

Top Keywords

clonal hematopoiesis
8
hematopoietic hierarchy
8
chip mds
8
mds
6
chip
6
hematopoietic
5
progressive disruption
4
disruption hematopoietic
4
hematopoietic architecture
4
clonal
4

Similar Publications

Introduction: Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones.

View Article and Find Full Text PDF

Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.

View Article and Find Full Text PDF

Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging?

Exp Hematol

December 2024

Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany. Electronic address:

Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues.

View Article and Find Full Text PDF

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

[VEXAS-like auto inflammatory syndrome: 2 cases].

Rev Med Interne

December 2024

Service de médecine interne, CHI Poissy-St Germain, 10, rue du Champs Gaillard, 78300 Poissy, France.

Introduction: VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic), recently described, due to a somatic mutation of the UBA1 gene and often associated with hemopathy, is characterized by systemic symptoms close to those described in Still's disease or relapsing polychondritis. There are also patients with hemopathy, presenting inflammatory symptoms reminiscent of those of VEXAS syndrome but without mutation of the UBA1 gene.

Case/discussion: Two male patients consulted for general signs, dermatological symptoms, arthralgia, chondritis and venous thrombosis, like patients in the French cohort suffering from VEXAS syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!