https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37520658&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3752065820240929
2059-6553722023JulNeuronal signalingNeuronal SignalEndocannabinoid signaling and epigenetics modifications in the neurobiology of stress-related disorders.NS20220034NS20220034NS2022003410.1042/NS20220034Stress exposure is associated with psychiatric conditions, such as depression, anxiety, and post-traumatic stress disorder (PTSD). It is also a vulnerability factor to developing or reinstating substance use disorder. Stress causes several changes in the neuro-immune-endocrine axis, potentially resulting in prolonged dysfunction and diseases. Changes in several transmitters, including serotonin, dopamine, glutamate, gamma-aminobutyric acid (GABA), glucocorticoids, and cytokines, are associated with psychiatric disorders or behavioral alterations in preclinical studies. Complex and interacting mechanisms make it very difficult to understand the physiopathology of psychiatry conditions; therefore, studying regulatory mechanisms that impact these alterations is a good approach. In the last decades, the impact of stress on biology through epigenetic markers, which directly impact gene expression, is under intense investigation; these mechanisms are associated with behavioral alterations in animal models after stress or drug exposure, for example. The endocannabinoid (eCB) system modulates stress response, reward circuits, and other physiological functions, including hypothalamus-pituitary-adrenal axis activation and immune response. eCBs, for example, act retrogradely at presynaptic neurons, limiting the release of neurotransmitters, a mechanism implicated in the antidepressant and anxiolytic effects after stress. Epigenetic mechanisms can impact the expression of eCB system molecules, which in turn can regulate epigenetic mechanisms. This review will present evidence of how the eCB system and epigenetic mechanisms interact and the consequences of this interaction in modulating behavioral changes after stress exposure in preclinical studies or psychiatric conditions. Moreover, evidence that correlates the involvement of the eCB system and epigenetic mechanisms in drug abuse contexts will be discussed.© 2023 The Author(s).CoelhoArthur AAADepartment of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil.Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.Lima-BastosSávioSDepartment of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil.Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.GobiraPedro HPHDepartment of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.LisboaSabrina FSF0000-0002-2069-3524Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.engJournal ArticleReview20230725
EnglandNeuronal Signal1017210792059-6553Drug abuseEndocannabinoid SystemEpigeneticsStressThe authors declare that there are no competing interests associated with the manuscript.
202312620236302023772023731644202373164320237314542023725epublish37520658PMC1037247110.1042/NS20220034NS20220034Godoy L.D., Rossignoli M.T., Delfino-Pereira P., Garcia-Cairasco N. and de Lima Umeoka E.H. (2018) A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav. Neurosci. 121–23 10.3389/fnbeh.2018.0012710.3389/fnbeh.2018.00127PMC604378730034327Yamamoto K.R. (1985) Steroid receptor regulated transcription of specific genes and gene networks. Annu. Rev. Genet. 19, 209–252 10.1146/annurev.ge.19.120185.00123310.1146/annurev.ge.19.120185.0012333909942Wang J.-C., Derynck M.K., Nonaka D.F., Khodabakhsh D.B., Haqq C. and Yamamoto K.R. (2004) Chromatin immunoprecipitation (ChIP) scanning identifies primary glucocorticoid receptor target genes. Proc. Natl. Acad. Sci. 101, 15603–15608 10.1073/pnas.040700810110.1073/pnas.0407008101PMC52421115501915Murphy M.D. and Heller E.A. (2022) Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci. 45, 955–967 10.1016/j.tins.2022.10.00110.1016/j.tins.2022.10.001PMC967185236280459Zhang W.-H., Zhang J.-Y., Holmes A. and Pan B.-X. (2021) Amygdala circuit substrates for stress adaptation and adversity. Biol. Psychiatry 89, 847–856 10.1016/j.biopsych.2020.12.02610.1016/j.biopsych.2020.12.02633691931Alexandra Kredlow M., Fenster R.J., Laurent E.S., Ressler K.J. and Phelps E.A. (2022) Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology 47, 247–259 10.1038/s41386-021-01155-710.1038/s41386-021-01155-7PMC861729934545196Sousa N. (2016) The dynamics of the stress neuromatrix. Mol. Psychiatry 21, 302–312 10.1038/mp.2015.19610.1038/mp.2015.196PMC475920426754952Le Merre P., Ährlund-Richter S. and Carlén M. (2021) The mouse prefrontal cortex: Unity in diversity. Neuron 109, 1925–1944 10.1016/j.neuron.2021.03.03510.1016/j.neuron.2021.03.03533894133Friedman N.P. and Robbins T.W. (2022) The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47, 72–89 10.1038/s41386-021-01132-010.1038/s41386-021-01132-0PMC861729234408280McKlveen J.M., Myers B. and Herman J.P. (2015) The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. J. Neuroendocrinol. 27, 446–456 10.1111/jne.1227210.1111/jne.12272PMC458028125737097Manoocheri K. and Carter A.G. (2022) Rostral and caudal basolateral amygdala engage distinct circuits in the prelimbic and infralimbic prefrontal cortex. eLife 11, e82688 10.7554/eLife.8268810.7554/eLife.82688PMC980335436476757van Aerde K.I., Heistek T.S. and Mansvelder H.D. (2008) Prelimbic and infralimbic prefrontal cortex interact during fast network oscillations. PloS ONE 3, e2725 10.1371/journal.pone.000272510.1371/journal.pone.0002725PMC244403718628964Gabbott P.L.A., Warner T.A., Jays P.R.L., Salway P. and Busby S.J. (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol. 492, 145–177 10.1002/cne.2073810.1002/cne.2073816196030Vertes R.P. (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32–58 10.1002/syn.1027910.1002/syn.1027914579424Popoli M., Yan Z., McEwen B.S. and Sanacora G. (2012) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 10.1038/nrn313810.1038/nrn3138PMC364531422127301Gądek-Michalska A., Tadeusz J., Rachwalska P. and Bugajski J. (2013) Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacological Rep. 65, 1655–1662 10.1016/S1734-1140(13)71527-510.1016/S1734-1140(13)71527-524553014Pandey G.N., Rizavi H.S., Ren X., Fareed J., Hoppensteadt D.A., Roberts R.C.et al. . (2012) Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J. Psychiatr. Res. 46, 57–63 10.1016/j.jpsychires.2011.08.00610.1016/j.jpsychires.2011.08.006PMC322420121906753Banasr M., Dwyer J.M. and Duman R.S. (2011) Cell atrophy and loss in depression: reversal by antidepressant treatment. Curr. Opin. Cell Biol. 23, 730–737 10.1016/j.ceb.2011.09.00210.1016/j.ceb.2011.09.002PMC325968321996102Rauch S.L., Shin L.M., Segal E., Pitman R.K., Carson M.A., McMullin K.et al. . (2003) Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport 14, 913–916 10.1097/01.wnr.0000071767.24455.1010.1097/01.wnr.0000071767.24455.1012802174Arnsten A.F.T. (2015) Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 18, 1376–1385 10.1038/nn.408710.1038/nn.4087PMC481621526404712Woo E., Sansing L.H., Arnsten A.F.T. and Datta D. (2021) Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes. Chronic Stress 5, 24705470211029254 10.1177/2470547021102925410.1177/24705470211029254PMC840889634485797Sun Y., Gooch H. and Sah P. (2020) Fear conditioning and the basolateral amygdala. F1000Research 9, 53PMC699382332047613Duvarci S., Popa D. and Pare D. (2011) Central amygdala activity during fear conditioning. J. Neurosci. 31, 289–294 10.1523/JNEUROSCI.4985-10.201110.1523/JNEUROSCI.4985-10.2011PMC308011821209214Hu F., Liang W., Zhang L., Wang H., Li Z. and Zhou Y. (2022) Hyperactivity of basolateral amygdala mediates behavioral deficits in mice following exposure to bisphenol A and its analogue alternative. Chemosphere 287, 132044 10.1016/j.chemosphere.2021.13204410.1016/j.chemosphere.2021.13204434474391Inagaki R., Moriguchi S. and Fukunaga K. (2018) Aberrant amygdala-dependent fear memory in corticosterone-treated mice. Neuroscience 388, 448–459 10.1016/j.neuroscience.2018.08.00410.1016/j.neuroscience.2018.08.00430118751Siegle G.J., Steinhauer S.R., Thase M.E., Stenger V.A. and Carter C.S. (2002) Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol. Psychiatry 51, 693–707 10.1016/S0006-3223(02)01314-810.1016/S0006-3223(02)01314-811983183Lupien S.J., Parent S., Evans A.C., Tremblay R.E., Zelazo P.D., Corbo V.et al. . (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc. Natl. Acad. Sci. 108, 14324–14329 10.1073/pnas.110537110810.1073/pnas.1105371108PMC316156521844357Frodl T., Meisenzahl E., Zetzsche T., Bottlender R., Born C., Groll C.et al. . (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol. Psychiatry 51, 708–714 10.1016/S0006-3223(01)01359-210.1016/S0006-3223(01)01359-211983184Dejean C., Courtin J., Rozeske R.R., Bonnet M.C., Dousset V., Michelet T.et al. . (2015) Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol. Psychiatr. 78, 298–306 10.1016/j.biopsych.2015.03.01710.1016/j.biopsych.2015.03.01725908496Thierry A.-M., Gioanni Y., Dégénétais E. and Glowinski J. (2000) Hippocampo-prefrontal cortex pathway: Anatomical and electrophysiological characteristics. Hippocampus 10, 411–419 10.1002/1098-1063(2000)10:4<411::AID-HIPO7>3.0.CO;2-A10.1002/1098-1063(2000)10:4<411::AID-HIPO7>3.0.CO;2-A10985280Ishikawa A. and Nakamura S. (2003) Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat. J. Neurosci. 23, 9987–9995 10.1523/JNEUROSCI.23-31-09987.200310.1523/JNEUROSCI.23-31-09987.2003PMC674085414602812Kim W.B. and Cho J.-H. (2017) Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. J. Neurosci. 37, 4868–4882 10.1523/JNEUROSCI.3579-16.201710.1523/JNEUROSCI.3579-16.2017PMC659647928385873Çalışkan G. and Stork O. (2019) Hippocampal network oscillations at the interplay between innate anxiety and learned fear. Psychopharmacology (Berl.) 236, 321–338 10.1007/s00213-018-5109-z10.1007/s00213-018-5109-z30417233Asok A., Kandel E.R. and Rayman J.B. (2019) The neurobiology of fear generalization. Front Behav Neurosci. 12, 1–15 10.3389/fnbeh.2018.0032910.3389/fnbeh.2018.00329PMC634099930697153Kim E.J., Pellman B. and Kim J.J. (2015) Stress effects on the hippocampus: a critical review. Learn. Memory 22, 411–416 10.1101/lm.037291.11410.1101/lm.037291.114PMC456140326286651Webler R.D., Berg H., Fhong K., Tuominen L., Holt D.J., Morey R.A.et al. . (2021) The neurobiology of human fear generalization: meta-analysis and working neural model. Neurosci. Biobehavioral Rev. 128, 421–436 10.1016/j.neubiorev.2021.06.03510.1016/j.neubiorev.2021.06.03534242718Murray F., Smith D.W. and Hutson P.H. (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur. J. Pharmacol. 583, 115–127 10.1016/j.ejphar.2008.01.01410.1016/j.ejphar.2008.01.01418289522Gurvits T.V., Shenton M.E., Hokama H., Ohta H., Lasko N.B., Gilbertson M.W.et al. . (1996) Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 40, 1091–1099 10.1016/S0006-3223(96)00229-610.1016/S0006-3223(96)00229-6PMC29109078931911Nolan M., Roman E., Nasa A., Levins K.J., O'Hanlon E., O'Keane V.et al. . (2020) Hippocampal and amygdalar volume changes in major depressive disorder: a targeted review and focus on stress. Chronic Stress 4, 2470547020944553 10.1177/247054702094455310.1177/2470547020944553PMC751340533015518Karl A., Schaefer M., Malta L.S., Dörfel D., Rohleder N. and Werner A. (2006) A meta-analysis of structural brain abnormalities in PTSD. Neurosci. Biobehav. Rev. 30, 1004–1031 10.1016/j.neubiorev.2006.03.00410.1016/j.neubiorev.2006.03.00416730374Bremner J.D., Randall P., Scott T.M., Bronen R.A., Seibyl J.P., Southwick S.M.et al. . (1995) MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 152, 973–981 10.1176/ajp.152.7.97310.1176/ajp.152.7.973PMC32337677793467Gilbertson M.W., Shenton M.E., Ciszewski A., Kasai K., Lasko N.B., Orr S.P.et al. . (2002) Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5, 1242–1247 10.1038/nn95810.1038/nn958PMC281909312379862Cristino L., Bisogno T. and Di Marzo V. (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29 10.1038/s41582-019-0284-z10.1038/s41582-019-0284-z31831863Witkin J.M., Tzavara E.T. and Nomikos G.G. (2005) A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav. Pharmacol. 16, 333–352 10.1097/00008877-200509000-0000510.1097/00008877-200509000-0000516148437Marsicano G., Wotjak C.T., Azad S.C., Bisogno T., Rammes G., Cascio M.G.et al. . (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 10.1038/nature0083910.1038/nature0083912152079Lisboa S.F., Gomes F.V., Silva A.L., Uliana D.L., Camargo L.H.A., Guimarães F.S.et al. . (2015) Increased contextual fear conditioning in iNOS knockout mice: additional evidence for the involvement of nitric oxide in stress-related disorders and contribution of the endocannabinoid system. Int. J. Neuropsychopharmacolog. 18, pyv005 10.1093/ijnp/pyv00510.1093/ijnp/pyv005PMC457162425618404Terzian A.L.B., Dos Reis D.G., Guimarães F.S., Corrêa F.M.A. and Resstel L.B.M. (2014) Medial prefrontal cortex transient receptor potential vanilloid type 1 (TRPV1) in the expression of contextual fear conditioning in Wistar rats. Psychopharmacology (Berl.) 231, 149–157 10.1007/s00213-013-3211-910.1007/s00213-013-3211-923922023Gobira P.H., Lima I.V., Batista L.A., de Oliveira A.C., Resstel L.B., Wotjak C.T.et al. . (2017) N-arachidonoyl-serotonin, a dual FAAH and TRPV1 blocker, inhibits the retrieval of contextual fear memory: Role of the cannabinoid CB1 receptor in the dorsal hippocampus. J. Psychopharmacol. 31, 750–756 10.1177/026988111769156710.1177/026988111769156728583049Marzo V.D., Bifulco M. and Petrocellis L.D. (2004) The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discovery 3, 771–784 10.1038/nrd149510.1038/nrd149515340387Bassir Nia A., Bender R. and Harpaz-Rotem I. (2019) Endocannabinoid system alterations in posttraumatic stress disorder: a review of developmental and accumulative effects of trauma. Chronic Stress 3, 2470547019864096 10.1177/247054701986409610.1177/2470547019864096PMC681627631660473Patel S., Hill M.N., Cheer J.F., Wotjak C.T. and Holmes A. (2017) The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehavioral Rev. 76, 56–66 10.1016/j.neubiorev.2016.12.03310.1016/j.neubiorev.2016.12.033PMC540731628434588Hill M.N., Miller G.E., Carrier E.J., Gorzalka B.B. and Hillard C.J. (2009) Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 34, 1257–1262 10.1016/j.psyneuen.2009.03.01310.1016/j.psyneuen.2009.03.013PMC271643219394765Hungund B.L., Vinod K.Y., Kassir S.A., Basavarajappa B.S., Yalamanchili R., Cooper T.B.et al. . (2004) Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims. Mol. Psychiatry 9, 184–190 10.1038/sj.mp.400137610.1038/sj.mp.400137614966476Gonda X., Petschner P., Eszlari N., Sutori S., Gal Z., Koncz S.et al. . (2019) Effects of different stressors are modulated by different neurobiological systems: the role of GABA-A versus CB1 receptor gene variants in anxiety and depression. Front Cell Neurosci. 13, 1–12 10.3389/fncel.2019.0013810.3389/fncel.2019.00138PMC646724131024264Mitjans M., Serretti A., Fabbri C., Gastó C., Catalán R., Fañanás L.et al. . (2013) Screening genetic variability at the CNR1 gene in both major depression etiology and clinical response to citalopram treatment. Psychopharmacology (Berl.) 227, 509–519 10.1007/s00213-013-2995-y10.1007/s00213-013-2995-y23407780Domschke K., Dannlowski U., Ohrmann P., Lawford B., Bauer J., Kugel H.et al. . (2008) Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in Major Depression. Eur. Neuropsychopharmacol. 18, 751–759 10.1016/j.euroneuro.2008.05.00310.1016/j.euroneuro.2008.05.00318579347Christensen R., Kristensen P.K., Bartels E.M., Bliddal H. and Astrup A. (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet North Am. Ed. 370, 1706–1713 10.1016/S0140-6736(07)61721-810.1016/S0140-6736(07)61721-818022033Hill M.N., Ho W.-S.V., Hillard C.J. and Gorzalka B.B. (2008) Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J. Neural Transm. 115, 1673–1679 10.1007/s00702-008-0131-710.1007/s00702-008-0131-7PMC299297518974922Neumeister A., Normandin M.D., Pietrzak R.H., Piomelli D., Zheng M.Q., Gujarro-Anton A.et al. . (2013) Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Mol. Psychiatry 18, 1034–1040 10.1038/mp.2013.6110.1038/mp.2013.61PMC375233223670490Mayo L.M., Asratian A., Lindé J., Holm L., Nätt D., Augier G.et al. . (2020) Protective effects of elevated anandamide on stress and fear-related behaviors: translational evidence from humans and mice. Mol. Psychiatry 25, 993–1005 10.1038/s41380-018-0215-110.1038/s41380-018-0215-130120421Zabik N.L., Iadipaolo A.S., Marusak H.A., Peters C., Burghardt K. and Rabinak C.A. (2022) A common genetic variant in fatty acid amide hydrolase is linked to alterations in fear extinction neural circuitry in a racially diverse, nonclinical sample of adults. J. Neurosci. Res. 100, 744–761 10.1002/jnr.2486010.1002/jnr.24860PMC862802634051704Lazary J., Eszlari N., Juhasz G. and Bagdy G. (2016) Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur. Neuropsychopharmacol. 26, 1020–1028 10.1016/j.euroneuro.2016.03.00310.1016/j.euroneuro.2016.03.00327005594Lazary J., Eszlari N., Juhasz G. and Bagdy G. (2019) A functional variant of CB2 receptor gene interacts with childhood trauma and FAAH gene on anxious and depressive phenotypes. J. Affect. Disord. 257, 716–722 10.1016/j.jad.2019.07.08310.1016/j.jad.2019.07.08331382124Ney L.J., Crombie K.M., Mayo L.M., Felmingham K.L., Bowser T. and Matthews A. (2022) Translation of animal endocannabinoid models of PTSD mechanisms to humans: Where to next? Neurosci. Biobehavioral Rev. 132, 76–91 10.1016/j.neubiorev.2021.11.04010.1016/j.neubiorev.2021.11.04034838529Lisboa S.F., Vila-Verde C., Rosa J., Uliana D.L., Stern C.A.J., Bertoglio L.J.et al. . (2019) Tempering aversive/traumatic memories with cannabinoids: a review of evidence from animal and human studies. Psychopharmacology (Berl.) 236, 201–226 10.1007/s00213-018-5127-x10.1007/s00213-018-5127-x30604182Ney L.J., Matthews A., Hsu C.-M.K., Zuj D.V., Nicholson E., Steward T.et al. . (2021) Cannabinoid polymorphisms interact with plasma endocannabinoid levels to predict fear extinction learning. Depress. Anxiety 38, 1087–1099 10.1002/da.2317010.1002/da.2317034151472Navarrete F., García-Gutiérrez M.S., Jurado-Barba R., Rubio G., Gasparyan A., Austrich-Olivares A.et al. . (2020) Endocannabinoid system components as potential biomarkers in psychiatry. Front Psychiatry 11, 1–30 10.3389/fpsyt.2020.0031510.3389/fpsyt.2020.00315PMC719748532395111Mayo L.M., Rabinak C.A., Hill M.N. and Heilig M. (2022) Targeting the endocannabinoid system in the treatment of posttraumatic stress disorder: a promising case of preclinical-clinical translation? Biol. Psychiatry 91, 262–272 10.1016/j.biopsych.2021.07.01910.1016/j.biopsych.2021.07.019PMC1109765234598785Haller J., Bakos N., Szirmay M., Ledent C. and Freund T.F. (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur. J. Neurosci. 16, 1395–1398 10.1046/j.1460-9568.2002.02192.x10.1046/j.1460-9568.2002.02192.x12405999Aso E., Ozaita A., Serra M.-À. and Maldonado R. (2011) Genes differentially expressed in CB1 knockout mice: Involvement in the depressive-like phenotype. Eur. Neuropsychopharmacol. 21, 11–22 10.1016/j.euroneuro.2010.06.00710.1016/j.euroneuro.2010.06.00720692131Valverde O. and Torrens M. (2012) CB1 receptor-deficient mice as a model for depression. Neuroscience 204, 193–206 10.1016/j.neuroscience.2011.09.03110.1016/j.neuroscience.2011.09.03121964469Martin M., Ledent C., Parmentier M., Maldonado R. and Valverde O. (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl.) 159, 379–387 10.1007/s00213-001-0946-510.1007/s00213-001-0946-511823890Mikics É., Dombi T., Barsvári B., Varga B., Ledent C., Freund T.F.et al. . (2006) The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice. Behav. Pharmacol. 17, 10.1097/00008877-200605000-0000310.1097/00008877-200605000-0000316572000Beyer C.E., Dwyer J.M., Piesla M.J., Platt B.J., Shen R., Rahman Z.et al. . (2010) Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol. Dis. 39, 148–155 10.1016/j.nbd.2010.03.02010.1016/j.nbd.2010.03.02020381618O'Brien L.D., Wills K.L., Segsworth B., Dashney B., Rock E.M., Limebeer C.L.et al. . (2013) Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability. Pharmacol. Biochem. Behav. 103, 597–602 10.1016/j.pbb.2012.10.00810.1016/j.pbb.2012.10.00823103902Rutkowska M. and Jachimczuk O. (2004) Antidepressant–like properties of ACEA (arachidonyl-2-chloroethylamide), the selective agonist of CB1 receptors. Acta Pol. Pharm. 61, 165–16715493300Hill M.N. and Gorzalka B.B. (2005) Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur. Neuropsychopharmacol. 15, 593–599 10.1016/j.euroneuro.2005.03.00310.1016/j.euroneuro.2005.03.00315916883Haller J., Varga B., Ledent C. and Freund T.F. (2004) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav. Pharmacol. 15, 299–304 10.1097/01.fbp.0000135704.56422.4010.1097/01.fbp.0000135704.56422.4015252281Ganon-Elazar E. and Akirav I. (2013) Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology 38, 1675–1687 10.1016/j.psyneuen.2013.01.01410.1016/j.psyneuen.2013.01.01423433741Laricchiuta D., Centonze D. and Petrosini L. (2013) Effects of endocannabinoid and endovanilloid systems on aversive memory extinction. Behav. Brain Res. 256, 101–107 10.1016/j.bbr.2013.08.01010.1016/j.bbr.2013.08.01023948212García-Gutiérrez M.S. and Manzanares J. (2010) Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. J. Psychopharmacol. 25, 111–120 10.1177/026988111037950710.1177/026988111037950720837564García-Gutiérrez M.S., García-Bueno B., Zoppi S., Leza J.C. and Manzanares J. (2012) Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br. J. Pharmacol. 165, 951–964 10.1111/j.1476-5381.2011.01625.x10.1111/j.1476-5381.2011.01625.xPMC331249121838753García-Gutiérrez M.S., Pérez-Ortiz J.M., Gutiérrez-Adán A. and Manzanares J. (2010) Depression-resistant endophenotype in mice overexpressing cannabinoid CB(2) receptors. Br. J. Pharmacol. 160, 1773–1784 10.1111/j.1476-5381.2010.00819.x10.1111/j.1476-5381.2010.00819.xPMC293684820649579Li Y. and Kim J. (2016) CB2 cannabinoid receptor knockout in mice impairs contextual long-term memory and enhances spatial working memory. Neural Plast. 2016, 9817089 10.1155/2016/981708910.1155/2016/9817089PMC470697726819779Gerdeman G. and Lovinger D.M. (2001) CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J. Neurophysiol. 85, 468–471 10.1152/jn.2001.85.1.46810.1152/jn.2001.85.1.46811152748Polissidis A., Galanopoulos A., Naxakis G., Papahatjis D., Papadopoulou-Daifoti Z. and Antoniou K. (2013) The cannabinoid CB1 receptor biphasically modulates motor activity and regulates dopamine and glutamate release region dependently. Int. J. Neuropsychopharmacolog. 16, 393–403 10.1017/S146114571200015610.1017/S146114571200015622391102Ferreira S.G., Teixeira F.M., Garção P., Agostinho P., Ledent C., Cortes L.et al. . (2012) Presynaptic CB1 cannabinoid receptors control frontocortical serotonin and glutamate release – Species differences. Neurochem. Int. 61, 219–226 10.1016/j.neuint.2012.05.00910.1016/j.neuint.2012.05.009PMC340878822609378Blázquez C., Chiarlone A., Bellocchio L., Resel E., Pruunsild P., García-Rincón D.et al. . (2015) The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differentiation 22, 1618–1629 10.1038/cdd.2015.1110.1038/cdd.2015.11PMC456377925698444Aso E., Ozaita A., Valdizán E.M., Ledent C., Pazos Á., Maldonado R.et al. . (2008) BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J. Neurochem. 105, 565–572 10.1111/j.1471-4159.2007.05149.x10.1111/j.1471-4159.2007.05149.x18047561Zoppi S., Madrigal J.L., Caso J.R., García-Gutiérrez M.S., Manzanares J., Leza J.C.et al. . (2014) Regulatory role of the cannabinoid CB2receptor in stress-induced neuroinflammation in mice. Br. J. Pharmacol. 171, 2814–2826 10.1111/bph.1260710.1111/bph.12607PMC424385724467609Lisboa S.F., Gomes F.V., Guimaraes F.S. and Campos A.C. (2016) Microglial cells as a link between cannabinoids and the immune hypothesis of psychiatric disorders. Front Neurol. 7, 10.3389/fneur.2016.0000510.3389/fneur.2016.00005PMC472988526858686Lisboa S.F., Niraula A., Resstel L.B., Guimaraes F.S., Godbout J.P. and Sheridan J.F. (2018) Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology 43, 1924–1933 10.1038/s41386-018-0064-210.1038/s41386-018-0064-2PMC604603529786066Coelho A.A., Vila-Verde C., Sartim A.G., Uliana D.L., Braga L.A., Guimarães F.S.et al. . (2022) Inducible nitric oxide synthase inhibition in the medial prefrontal cortex attenuates the anxiogenic-like effect of acute restraint stress via CB1 receptors. Front Psychiatry 13, 1–11 10.3389/fpsyt.2022.92317710.3389/fpsyt.2022.923177PMC933090835911236Hill M.N., McLaughlin R.J., Pan B., Fitzgerald M.L., Roberts C.J., Lee T.T.Y.et al. . (2011) Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31, 10506–10515 10.1523/JNEUROSCI.0496-11.201110.1523/JNEUROSCI.0496-11.2011PMC317926621775596Lyko F. (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 10.1038/nrg.2017.8010.1038/nrg.2017.8029033456Chin E.W.M. and Goh E.L.K. (2019) MeCP2 dysfunction in rett syndrome and neuropsychiatric disorders. Methods Mol. Biol. 2011, 573–591 10.1007/978-1-4939-9554-7_3310.1007/978-1-4939-9554-7_3331273722Du Q., Luu P.L., Stirzaker C. and Clark S.J. (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7, 1051–1073 10.2217/epi.15.3910.2217/epi.15.3925927341Ehrlich M. (2019) DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics 14, 1141–1163 10.1080/15592294.2019.163870110.1080/15592294.2019.1638701PMC679169531284823Vinkers C.H., Kalafateli A.L., Rutten B.P., Kas M.J., Kaminsky Z., Turner J.D.et al. . (2015) Traumatic stress and human DNA methylation: a critical review. Epigenomics 7, 593–608 10.2217/epi.15.1110.2217/epi.15.1126111031Klengel T., Pape J., Binder E.B. and Mehta D. (2014) The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 80, 115–132 10.1016/j.neuropharm.2014.01.01310.1016/j.neuropharm.2014.01.01324452011Zhang Y. and Liu C. (2022) Evaluating the challenges and reproducibility of studies investigating DNA methylation signatures of psychological stress. Epigenomics 14, 405–421 10.2217/epi-2021-019010.2217/epi-2021-0190PMC897898435170363Bakusic J., Schaufeli W., Claes S. and Godderis L. (2017) Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 92, 34–44 10.1016/j.jpsychores.2016.11.00510.1016/j.jpsychores.2016.11.00527998510Argentieri M.A., Nagarajan S., Seddighzadeh B., Baccarelli A.A. and Shields A.E. (2017) Epigenetic pathways in human disease: the impact of DNA methylation on stress-related pathogenesis and current challenges in biomarker development. EBioMedicine 18, 327–350 10.1016/j.ebiom.2017.03.04410.1016/j.ebiom.2017.03.044PMC540519728434943Steiger H., Labonté B., Groleau P., Turecki G. and Israel M. (2013) Methylation of the glucocorticoid receptor gene promoter in bulimic women: Associations with borderline personality disorder, suicidality, and exposure to childhood abuse. Int. J. Eat. Disord. 46, 246–255 10.1002/eat.2211310.1002/eat.2211323417893Labonté B., Suderman M., Maussion G., Navaro L., Yerko V., Mahar I.et al. . (2012) Genome-wide epigenetic regulation by early-life trauma. Arch. Gen. Psychiatry 69, 722–731 10.1001/archgenpsychiatry.2011.228710.1001/archgenpsychiatry.2011.2287PMC499194422752237Perroud N., Paoloni-Giacobino A., Prada P., Olié E., Salzmann A., Nicastro R.et al. . (2011) Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl. Psychiatry 1, e59 10.1038/tp.2011.6010.1038/tp.2011.60PMC330949922832351Radtke K.M., Ruf M., Gunter H.M., Dohrmann K., Schauer M., Meyer A.et al. . (2011) Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1, e21 10.1038/tp.2011.2110.1038/tp.2011.21PMC330951622832523Tyrka A.R., Price L.H., Marsit C., Walters O.C. and Carpenter L.L. (2012) Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PloS ONE 7, e30148 10.1371/journal.pone.003014810.1371/journal.pone.0030148PMC326625622295073Labonté B., Azoulay N., Yerko V., Turecki G. and Brunet A. (2014) Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl. Psychiatry 4, e368 10.1038/tp.2014.310.1038/tp.2014.3PMC396604324594779Vukojevic V., Kolassa I.T., Fastenrath M., Gschwind L., Spalek K., Milnik A.et al. . (2014) Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors. J. Neurosci. 34, 10274–10284 10.1523/JNEUROSCI.1526-14.201410.1523/JNEUROSCI.1526-14.2014PMC660827325080589Na K.-S., Chang H.S., Won E., Han K.-M., Choi S., Tae W.S.et al. . (2014) Association between glucocorticoid receptor methylation and hippocampal subfields in major depressive disorder. PLoS ONE 9, e85425 10.1371/journal.pone.008542510.1371/journal.pone.0085425PMC389745624465557Yehuda R., Flory J.D., Bierer L.M., Henn-Haase C., Lehrner A., Desarnaud F.et al. . (2015) Lower methylation of glucocorticoid receptor gene promoter 1F in Peripheral blood of veterans with posttraumatic stress disorder. Biol. Psychiatry 77, 356–364 10.1016/j.biopsych.2014.02.00610.1016/j.biopsych.2014.02.00624661442McGowan P.O., Sasaki A., D'Alessio A.C., Dymov S., Labonté B., Szyf M.et al. . (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348 10.1038/nn.227010.1038/nn.2270PMC294404019234457Suderman M., McGowan P.O., Sasaki A., Huang T.C.T., Hallett M.T., Meaney M.J.et al. . (2012) Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc. Natl. Acad. Sci. 109, 17266–17272 10.1073/pnas.112126010910.1073/pnas.1121260109PMC347739223045659Beach S.R.H., Brody G.H., Todorov A.A., Gunter T.D. and Philibert R.A. (2010) Methylation at SLC6A4 is linked to family history of child abuse: An examination of the Iowa Adoptee sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 710–713 10.1002/ajmg.b.3102810.1002/ajmg.b.31028PMC290911219739105Koenen K.C., Uddin M., Chang S.-C., Aiello A.E., Wildman D.E., Goldmann E.et al. . (2011) SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress. Anxiety 28, 639–647 10.1002/da.2082510.1002/da.20825PMC314582921608084Alasaari J.S., Lagus M., Ollila H.M., Toivola A., Kivimäki M., Vahtera J.et al. . (2012) Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort. PLoS ONE 7, e45813 10.1371/journal.pone.004581310.1371/journal.pone.0045813PMC346101923029256Kang H.-J., Kim J.-M., Stewart R., Kim S.-Y., Bae K.-Y., Kim S.-W.et al. . (2013) Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 44, 23–28 10.1016/j.pnpbp.2013.01.00610.1016/j.pnpbp.2013.01.00623333376Zhao J., Goldberg J., Bremner J.D. and Vaccarino V. (2013) Association between promoter methylation of serotonin transporter gene and depressive symptoms: A monozygotic twin study. Psychosom. Med. 75, 523–529 10.1097/PSY.0b013e3182924cf410.1097/PSY.0b013e3182924cf4PMC384869823766378Wang D., Szyf M., Benkelfat C., Provençal N., Turecki G., Caramaschi D.et al. . (2012) Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PloS ONE 7, e39501 10.1371/journal.pone.003950110.1371/journal.pone.0039501PMC337999322745770Kim J.M., Stewart R., Kang H.J., Kim S.W., Shin I.S., Kim H.R.et al. . (2013) A longitudinal study of SLC6A4 DNA promoter methylation and poststroke depression. J. Psychiatr. Res. 47, 1222–1227 10.1016/j.jpsychires.2013.04.01010.1016/j.jpsychires.2013.04.01023702251Okada S., Morinobu S., Fuchikami M., Segawa M., Yokomaku K., Kataoka T.et al. . (2014) The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J. Psychiatr. Res. 53, 47–53 10.1016/j.jpsychires.2014.02.00210.1016/j.jpsychires.2014.02.00224657235Zhang Y., Sun Z., Jia J., Du T., Zhang N., Tang Y.et al. . (2021) Overview of histone modification. In Histone Mutations and Cancer(Fang D. and Han J., eds), pp. 1–16, Springer Singapore, Singapore: 10.1007/978-981-15-8104-5_110.1007/978-981-15-8104-5_10Lawrence M., Daujat S. and Schneider R. (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 32, 42–56 10.1016/j.tig.2015.10.00710.1016/j.tig.2015.10.00726704082Fiori L.M., Gross J.A. and Turecki G. (2012) Effects of histone modifications on increased expression of polyamine biosynthetic genes in suicide. Int. J. Neuropsychopharmacol. 15, 1161–1166 10.1017/S146114571100152010.1017/S146114571100152022008221Golden S.A., Christoffel D.J., Heshmati M., Hodes G.E., Magida J., Davis K.et al. . (2013) Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat. Med. 19, 337–344 10.1038/nm.309010.1038/nm.3090PMC359462423416703Cruceanu C., Alda M., Nagy C., Freemantle E., Rouleau G.A. and Turecki G. (2013) H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int. J. Neuropsychopharmacol. 16, 289–299 10.1017/S146114571200036310.1017/S1461145712000363PMC356495222571925Nestler E.J., Peña C.J., Kundakovic M., Mitchell A. and Akbarian S. (2016) Epigenetic basis of mental illness. Neuroscientist: a Rev. J. Bringing Neurobiol. Neurol. Psychiatry 22, 447–463 10.1177/107385841560814710.1177/1073858415608147PMC482631826450593Thumfart K.M., Jawaid A., Bright K., Flachsmann M. and Mansuy I.M. (2022) Epigenetics of childhood trauma: Long term sequelae and potential for treatment. Neurosci. Biobehav. Rev. 132, 1049–1066 10.1016/j.neubiorev.2021.10.04210.1016/j.neubiorev.2021.10.04234742726Torres-Berrío A., Issler O., Parise E.M. and Nestler E.J. (2019) Unraveling the epigenetic landscape of depression: focus on early life stress. Dialogues Clin. Neurosci. 21, 341–357PMC695274731949402Tsankova N.M., Berton O., Renthal W., Kumar A., Neve R.L. and Nestler E.J. (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–525 10.1038/nn165910.1038/nn165916501568Réus G.Z., Abelaira H.M., dos Santos M.A.B., Carlessi A.S., Tomaz D.B., Neotti M.V.et al. . (2013) Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behav. Brain Res. 256, 451–456 10.1016/j.bbr.2013.08.04110.1016/j.bbr.2013.08.04124004850Nghia N.A., Hirasawa T., Kasai H., Obata C., Moriishi K., Mochizuki K.et al. . (2015) Long-term imipramine treatment increases N-methyl-d-aspartate receptor activity and expression via epigenetic mechanisms. Eur. J. Pharmacol. 752, 69–77 10.1016/j.ejphar.2015.02.01010.1016/j.ejphar.2015.02.01025701723Schmauss C. (2015) An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci. Rep. 5, 8171 10.1038/srep0817110.1038/srep08171PMC431309025639887Han A., Sung Y.B., Chung S.Y. and Kwon M.S. (2014) Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology 81, 292–302 10.1016/j.neuropharm.2014.02.01710.1016/j.neuropharm.2014.02.01724607816Ershadi A.S.B., Amini-Khoei H., Hosseini M.J. and Dehpour A.R. (2021) SAHA improves depressive symptoms, cognitive impairment and oxidative stress: rise of a new antidepressant class. Neurochem. Res. 46, 1252–1263 10.1007/s11064-021-03263-810.1007/s11064-021-03263-833576938Hsing C.H., Hung S.K., Chen Y.C., Wei T.S., Sun D.P., Wang J.J.et al. . (2015) Histone deacetylase inhibitor trichostatin A ameliorated endotoxin-induced neuroinflammation and cognitive dysfunction. Mediators Inflamm. 2015, 163140 10.1155/2015/16314010.1155/2015/163140PMC453027526273133Schroeder F.A., Lin C.L., Crusio W.E. and Akbarian S. (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55–64 10.1016/j.biopsych.2006.06.03610.1016/j.biopsych.2006.06.03616945350Panni S., Lovering R.C., Porras P. and Orchard S. (2020) Non-coding RNA regulatory networks. Biochim. Biophys. Acta. 1863, 194417 10.1016/j.bbagrm.2019.19441710.1016/j.bbagrm.2019.19441731493559Lin R. and Turecki G. (2017) Noncoding RNAs in depression. In Neuroepigenomics in Aging and Disease(Delgado-Morales R., ed.), pp. 197–210, Springer International Publishing, Cham: 10.1007/978-3-319-53889-1_1110.1007/978-3-319-53889-1_110Snijders C., de Nijs L., Baker D.G., Hauger R.L., van den Hove D., Kenis G.et al. . (2018) MicroRNAs in post-traumatic stress disorder. In Behavioral Neurobiology of PTSD(Vermetten E., Baker D.G. and Risbrough V.B., eds), pp. 23–46, Springer International Publishing, Cham29063484Murphy C.P. and Singewald N. (2019) Role of MicroRNAs in anxiety and anxiety-related disorders. In Behavioral Neurogenomics(Binder E.B. and Klengel T., eds), pp. 185–219, Springer International Publishing, Cham31485988O'Connor R.M., Gururajan A., Dinan T.G., Kenny P.J. and Cryan J.F. (2016) All roads lead to the miRNome: miRNAs have a central role in the molecular pathophysiology of psychiatric disorders. Trends Pharmacol. Sci. 37, 1029–1044 10.1016/j.tips.2016.10.00410.1016/j.tips.2016.10.00427832923Dwivedi Y. (2018) MicroRNAs in depression and suicide: recent insights and future perspectives. J. Affect. Disord. 240, 146–154 10.1016/j.jad.2018.07.07510.1016/j.jad.2018.07.075PMC610893430071418Hung Y.-Y., Wu M.-K., Tsai M.-C., Huang Y.-L. and Kang H.-Y. (2019) Aberrant expression of intracellular let-7e, miR-146a, and miR-155 correlates with severity of depression in patients with major depressive disorder and is ameliorated after antidepressant treatment. Cells 8, 1–12 10.3390/cells807064710.3390/cells8070647PMC667848731252530Bocchio-Chiavetto L., Maffioletti E., Bettinsoli P., Giovannini C., Bignotti S., Tardito D.et al. . (2013) Blood microRNA changes in depressed patients during antidepressant treatment. Eur. Neuropsychopharmacol. 23, 602–611 10.1016/j.euroneuro.2012.06.01310.1016/j.euroneuro.2012.06.01322925464Baudry A., Mouillet-Richard S., Schneider B., Launay J.M. and Kellermann O. (2010) miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329, 1537–1541 10.1126/science.119369210.1126/science.119369220847275Wang S., Wu W. and Claret F.X. (2017) Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 12, 187–197 10.1080/15592294.2016.127330810.1080/15592294.2016.1273308PMC540621528059592Pérez-Rodríguez D., López-Fernández H. and Agís-Balboa R.C. (2021) Application of miRNA-seq in neuropsychiatry: a methodological perspective. Comput. Biol. Med. 135, 104603 10.1016/j.compbiomed.2021.10460310.1016/j.compbiomed.2021.10460334216893Rotter A., Bayerlein K., Hansbauer M., Weiland J., Sperling W., Kornhuber J.et al. . (2013) CB1 and CB2 receptor expression and promoter methylation in patients with cannabis dependence. Eur. Addict. Res. 19, 13–20 10.1159/00033864210.1159/00033864222948261Liu J., Chen J., Ehrlich S., Walton E., White T., Perrone-Bizzozero N.et al. . (2014) Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr. Bull. 40, 769–776 10.1093/schbul/sbt08010.1093/schbul/sbt080PMC405942523734059DiNieri J.A., Wang X., Szutorisz H., Spano S.M., Kaur J., Casaccia P.et al. . (2011) Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70, 763–769 10.1016/j.biopsych.2011.06.02710.1016/j.biopsych.2011.06.027PMC318686821820648Wang X., Dow-Edwards D., Anderson V., Minkoff H. and Hurd Y.L. (2004) In utero marijuana exposure associated with abnormal amygdala dopamine D2 gene expression in the human fetus. Biol. Psychiatry 56, 909–915 10.1016/j.biopsych.2004.10.01510.1016/j.biopsych.2004.10.01515601599Ibn Lahmar Andaloussi Z., Taghzouti K. and Abboussi O. (2019) Behavioural and epigenetic effects of paternal exposure to cannabinoids during adolescence on offspring vulnerability to stress. Int. J. Dev. Neurosci. 72, 48–54 10.1016/j.ijdevneu.2018.11.00710.1016/j.ijdevneu.2018.11.00730476535Innocenzi E., De Domenico E., Ciccarone F., Zampieri M., Rossi G., Cicconi R.et al. . (2019) Paternal activation of CB2 cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism. Sci. Rep. 9, 17034 10.1038/s41598-019-53579-310.1038/s41598-019-53579-3PMC686386031745152Sales A.J., Guimarães F.S. and Joca S.R.L. (2020) CBD modulates DNA methylation in the prefrontal cortex and hippocampus of mice exposed to forced swim. Behav. Brain Res. 388, 112627 10.1016/j.bbr.2020.11262710.1016/j.bbr.2020.11262732348868da Silva V.K., de Freitas B.S., Dornelles V.C., Kist L.W., Bogo M.R., Silva M.C.et al. . (2018) Novel insights into mitochondrial molecular targets of iron-induced neurodegeneration: Reversal by cannabidiol. Brain Res. Bull. 139, 1–8 10.1016/j.brainresbull.2018.01.01410.1016/j.brainresbull.2018.01.01429374603Wanner N.M., Colwell M., Drown C. and Faulk C. (2020) Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. Environ. Mol. Mutagen. 61, 890–900 10.1002/em.2239610.1002/em.22396PMC776546332579259Wu H., Coskun V., Tao J., Xie W., Ge W., Yoshikawa K.et al. . (2010) Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448 10.1126/science.119048510.1126/science.1190485PMC353976020651149Wu Z., Huang K., Yu J., Le T., Namihira M., Liu Y.et al. . (2012) Dnmt3a regulates both proliferation and differentiation of mouse neural stem cells. J. Neurosci. Res. 90, 1883–1891 10.1002/jnr.2307710.1002/jnr.23077PMC341843622714992García-Gutiérrez M.S., Navarrete F., Gasparyan A., Austrich-Olivares A., Sala F. and Manzanares J. (2020) Cannabidiol: a potential new alternative for the treatment of anxiety, depression, and psychotic disorders. Biomolecules 10, 1–34 10.3390/biom1011157510.3390/biom10111575PMC769961333228239Todd S.M., Zhou C., Clarke D.J., Chohan T.W., Bahceci D. and Arnold J.C. (2017) Interactions between cannabidiol and Δ9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway. Eur. Neuropsychopharmacol. 27, 132–145 10.1016/j.euroneuro.2016.12.00410.1016/j.euroneuro.2016.12.00428043732Pastrana-Trejo J.C., Duarte-Aké F., Us-Camas R., De-la-Peña C., Parker L., Pertwee R.G.et al. . (2021) Effects on the post-translational modification of H3K4Me3, H3K9ac, H3K9Me2, H3K27Me3, and H3K36Me2 levels in cerebral cortex, hypothalamus and pons of rats after a systemic administration of cannabidiol: a preliminary study. Cent. Nerv. Syst. Agents Med. Chem. 21, 142–147 10.2174/187152492066620092411452410.2174/187152492066620092411452432972354Lomazzo E., König F., Abassi L., Jelinek R. and Lutz B. (2017) Chronic stress leads to epigenetic dysregulation in the neuropeptide-Y and cannabinoid CB1 receptor genes in the mouse cingulate cortex. Neuropharmacology 113, 301–313 10.1016/j.neuropharm.2016.10.00810.1016/j.neuropharm.2016.10.00827737789Wang S.E., Ko S.Y., Kim Y.-S., Jo S., Lee S.H., Jung S.J.et al. . (2018) Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp. Mol. Med. 50, e455 10.1038/emm.2017.28910.1038/emm.2017.289PMC589889329520110Wang S.E., Ko S.Y., Jo S., Choi M., Lee S.H., Jo H.-R.et al. . (2017) TRPV1 Regulates Stress Responses through HDAC2. Cell Rep. 19, 401–412 10.1016/j.celrep.2017.03.05010.1016/j.celrep.2017.03.05028402861Buran İ., Etem E.Ö., Tektemur A. and Elyas H. (2017) Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci. Lett. 656, 51–57 10.1016/j.neulet.2017.07.01710.1016/j.neulet.2017.07.01728716528Lee P.H., Perlis R.H., Jung J.Y., Byrne E.M., Rueckert E., Siburian R.et al. . (2012) Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Transl. Psychiatry 2, e184 10.1038/tp.2012.9510.1038/tp.2012.95PMC356576823149448Numakawa T., Nakajima S., Adachi N., Richards M. and Kunugi H. (2013) Neurotrophin Bdnf and novel molecular targets in depression pathogenesis. J. Neurol. Transl. Neurosci. 1, 1–8Dwivedi Y., Rizavi H.S., Roberts R.C., Conley R.C., Tamminga C.A. and Pandey G.N. (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J. Neurochem. 77, 916–928 10.1046/j.1471-4159.2001.00300.x10.1046/j.1471-4159.2001.00300.x11331420Launay J., Mouillet-Richard S., Baudry A., Pietri M. and Kellermann O. (2011) Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl. Psychiatry 1, e56 10.1038/tp.2011.5410.1038/tp.2011.54PMC330947222833211Bai M., Zhu X., Zhang Y., Zhang S., Zhang L., Xue L.et al. . (2012) Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS ONE 7, e46921 10.1371/journal.pone.004692110.1371/journal.pone.0046921PMC346617923056528Tochigi M., Iwamoto K., Bundo M., Sasaki T., Kato N. and Kato T. (2008) Gene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains. Neurosci. Res. 60, 184–191 10.1016/j.neures.2007.10.01010.1016/j.neures.2007.10.01018068248Shi Y., Yuan Y., Xu Z., Pu M., Wang C., Zhang Y.et al. . (2012) Genetic variation in the calcium/calmodulin-dependent protein kinase (CaMK) pathway is associated with antidepressant response in females. J. Affect. Disord. 136, 558–566 10.1016/j.jad.2011.10.03010.1016/j.jad.2011.10.03022119081Portugalov A., Zaidan H., Gaisler-Salomon I., Hillard C.J. and Akirav I. (2022) FAAH Inhibition restores early life stress-induced alterations in PFC microRNAs associated with depressive-like behavior in male and female rats. Int. J. Mol. Sci. 23, 1–23 10.3390/ijms23241610110.3390/ijms232416101PMC978251336555739Chiarlone A., Börner C., Martín-Gómez L., Jiménez-González A., García-Concejo A., García-Bermejo M.L.et al. . (2016) MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling. Neuropharmacology 108, 345–352 10.1016/j.neuropharm.2016.05.00710.1016/j.neuropharm.2016.05.00727179908Wei Y.B., Liu J.J., Villaescusa J.C., Åberg E., Brené S., Wegener G.et al. . (2016) Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression. Translational Psychiatry 6, e869 10.1038/tp.2016.13610.1038/tp.2016.136PMC502208227529677Bahi A. and Dreyer J.-L. (2018) Lentiviral-mediated let-7d microRNA overexpression induced anxiolytic- and anti-depressant-like behaviors and impaired dopamine D3 receptor expression. Eur. Neuropsychopharmacol. 28, 1394–1404 10.1016/j.euroneuro.2018.09.00410.1016/j.euroneuro.2018.09.00430244920Zhao C., Sun G., Ye P., Li S. and Shi Y. (2013) MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci. Rep. 3, 1329 10.1038/srep0132910.1038/srep01329PMC358032523435502Chandrasekar V. and Dreyer J.-L. (2009) microRNAs miR-124, let-7d and miR-181a regulate Cocaine-induced Plasticity. Mol. Cell. Neurosci. 42, 350–362 10.1016/j.mcn.2009.08.00910.1016/j.mcn.2009.08.00919703567Ferber S.G., Roth T.L. and Weller A. (2020) Epigenetic fragility of the endocannabinoid system under stress: risk for mood disorders and pharmacogenomic implications. Epigenomics 12, 657–660 10.2217/epi-2020-003710.2217/epi-2020-003732396405Salamat J.M., Abbott K.L., Flannery P.C., Ledbetter E.L. and Pondugula S.R. (2022) Interplay between the cannabinoid system and microRNAs in cancer. ACS Omega 7, 9995–10000 10.1021/acsomega.2c0063510.1021/acsomega.2c00635PMC897311135382335Meccariello R., Santoro A., Angelo S., Morrone R., Fasano S., Viggiano A.et al. . (2020) The epigenetics of the endocannabinoid system. Int. J. Mol. Sci. 21, 10.3390/ijms2103111310.3390/ijms21031113PMC703769832046164Gomes T.M., Dias da Silva D., Carmo H., Carvalho F. and Silva J.P. (2020) Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol. Res. 162, 105237 10.1016/j.phrs.2020.10523710.1016/j.phrs.2020.10523733053442Tao R., Li C., Jaffe A.E., Shin J.H., Deep-Soboslay A., Yamin Reet al. . (2020) Cannabinoid receptor CNR1 expression and DNA methylation in human prefrontal cortex, hippocampus and caudate in brain development and schizophrenia. Transl. Psychiatry 10, 158 10.1038/s41398-020-0832-810.1038/s41398-020-0832-8PMC723745632433545Wang D., Wang H., Ning W., Backlund M.G., Dey S.K. and DuBois R.N. (2008) Loss of cannabinoid receptor 1 accelerates intestinal tumor growth. Cancer Res. 68, 6468–6476 10.1158/0008-5472.CAN-08-089610.1158/0008-5472.CAN-08-0896PMC256125818676872Xia D., Wang D., Kim S.-H., Katoh H. and DuBois R.N. (2012) Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat. Med. 18, 224–226 10.1038/nm.260810.1038/nm.2608PMC327462722270723Hong S., Zheng G. and Wiley J.W. (2015) Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology 148, 148.e7–157.e7 10.1053/j.gastro.2014.09.03210.1053/j.gastro.2014.09.032PMC427424825263804D'Addario C., Micale V., Di Bartolomeo M., Stark T., Pucci M., Sulcova A.et al. . (2017) A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia. Schizophr. Res. 188, 132–140 10.1016/j.schres.2017.01.02210.1016/j.schres.2017.01.02228108228Pucci M., Micioni Di Bonaventura M.V., Vezzoli V., Zaplatic E., Massimini M., Mai S.et al. . (2019) Preclinical and clinical evidence for a distinct regulation of Mu opioid and Type 1 cannabinoid receptor genes expression in obesity. Front. Genet. 10, 523 10.3389/fgene.2019.0052310.3389/fgene.2019.00523PMC658804831258545Mancino S., Burokas A., Gutiérrez-Cuesta J., Gutiérrez-Martos M., Martín-García E., Pucci M.et al. . (2015) Epigenetic and proteomic expression changes promoted by eating addictive-like behavior. Neuropsychopharmacology 40, 2788–2800 10.1038/npp.2015.12910.1038/npp.2015.129PMC486465525944409Di Francesco A., Falconi A., Di Germanio C., Micioni Di Bonaventura M.V., Costa A., Caramuta S.et al. . (2015) Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J. Nutr. Biochem. 26, 250–258 10.1016/j.jnutbio.2014.10.01310.1016/j.jnutbio.2014.10.01325533906D'Addario C., Zaplatic E., Giunti E., Pucci M., Micioni Di Bonaventura M.V., Scherma M.et al. . (2020) Epigenetic regulation of the cannabinoid receptor CB1 in an activity-based rat model of anorexia nervosa. Int. J. Eat. Disord. 53, 432–446 10.1002/eat.2327110.1002/eat.2327132275093Börner C., Martella E., Höllt V. and Kraus J. (2012) Regulation of opioid and cannabinoid receptor genes in human neuroblastoma and T cells by the epigenetic modifiers trichostatin A and 5-Aza-2′-deoxycytidine. NeuroImmunoModulation 19, 180–186 10.1159/00033147410.1159/00033147422262103Chen J., Hutchison K.E., Bryan A.D., Filbey F.M., Calhoun V.D., Claus E.D.et al. . (2018) Opposite Epigenetic associations with alcohol use and exercise intervention. Front. Psychiatry 9, 594 10.3389/fpsyt.2018.0059410.3389/fpsyt.2018.00594PMC624951030498460D'Addario C., Di Francesco A., Arosio B., Gussago C., Dell'Osso B., Bari M.et al. . (2012) Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease. PLoS ONE 7, e39186 10.1371/journal.pone.003918610.1371/journal.pone.0039186PMC337361122720070Franklin T.B., Russig H., Weiss I.C., Gräff J., Linder N., Michalon A.et al. . (2010) Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 10.1016/j.biopsych.2010.05.03610.1016/j.biopsych.2010.05.03620673872Uddin M., Aiello A.E., Wildman D.E., Koenen K.C., Pawelec G., de los Santos R.et al. . (2010) Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. Acad. Sci. 107, 9470–9475 10.1073/pnas.091079410710.1073/pnas.0910794107PMC288904120439746Hill M.N., Campolongo P., Yehuda R. and Patel S. (2018) Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology 43, 80–102 10.1038/npp.2017.16210.1038/npp.2017.162PMC571909528745306Subbanna S., Nagre N.N., Umapathy N.S., Pace B.S. and Basavarajappa B.S. (2015) Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int. J. Neuropsychopharmacolog. 18, pyu028 10.1093/ijnp/pyu02810.1093/ijnp/pyu028PMC437653825609594Subbanna S., Shivakumar M., Psychoyos D., Xie S. and Basavarajappa B.S. (2013) Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. J. Neurosci.: Off. J. Soc. Neurosci. 33, 6350–6366 10.1523/JNEUROSCI.3786-12.201310.1523/JNEUROSCI.3786-12.2013PMC374202923575834Luo Y., Zhang J., Chen L., Chen S.-R., Chen H., Zhang G.et al. . (2020) Histone methyltransferase G9a diminishes expression of cannabinoid CB1 receptors in primary sensory neurons in neuropathic pain. J. Biol. Chem. 295, 3553–3562 10.1074/jbc.RA119.01105310.1074/jbc.RA119.011053PMC707622332024693Pucci M., Micioni Di Bonaventura M.V., Zaplatic E., Bellia F., Maccarrone M., Cifani C.et al. . (2019) Transcriptional regulation of the endocannabinoid system in a rat model of binge-eating behavior reveals a selective modulation of the hypothalamic fatty acid amide hydrolase gene. Int. J. Eat. Disord. 52, 51–60 10.1002/eat.2298910.1002/eat.2298930578649Tung C.W., Ho C., Hsu Y.C., Huang S.C., Shih Y.H. and Lin C.L. (2019) MicroRNA-29a attenuates diabetic glomerular injury through modulating cannabinoid receptor 1 signaling. Molecules 24, 10.3390/molecules2402026410.3390/molecules24020264PMC635964130642005Sredni S.T., Huang C.C., Suzuki M., Pundy T., Chou P. and Tomita T. (2016) Spontaneous involution of pediatric low-grade gliomas: high expression of cannabinoid receptor 1 (CNR1) at the time of diagnosis may indicate involvement of the endocannabinoid system. Childs Nervous System 32, 2061–2067 10.1007/s00381-016-3243-710.1007/s00381-016-3243-727613640Li L., Xu Y., Zhao M. and Gao Z. (2020) Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer's disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Exp. Mol. Pathol. 117, 104545 10.1016/j.yexmp.2020.10454510.1016/j.yexmp.2020.10454532976819Gou X., Wu J., Huang M., Weng Y., Yang T., Chen T.et al. . (2020) microRNA-128 mediates CB1 expression and regulates NF-KB/p-JNK axis to influence the occurrence of diabetic bladder disease. J. Transl. Med. 18, 284 10.1186/s12967-020-02406-910.1186/s12967-020-02406-9PMC736723232678046Zhang A., Bai Z., Yi W., Hu Z. and Hao J. (2021) Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats. Neurosci. Lett. 761, 136124 10.1016/j.neulet.2021.13612410.1016/j.neulet.2021.13612434302891Möhnle P., Schütz S.V., Schmidt M., Hinske C., Hübner M., Heyn J.et al. . (2014) MicroRNA-665 is involved in the regulation of the expression of the cardioprotective cannabinoid receptor CB2 in patients with severe heart failure. Biochem. Biophys. Res. Commun. 451, 516–521 10.1016/j.bbrc.2014.08.00810.1016/j.bbrc.2014.08.00825111814Xu A., Yang Y., Shao Y., Wu M. and Sun Y. (2019) Inhibiting effect of microRNA-187-3p on osteogenic differentiation of osteoblast precursor cells by suppressing cannabinoid receptor type 2. Differentiation 109, 9–15 10.1016/j.diff.2019.07.00210.1016/j.diff.2019.07.00231352121Most D., Salem N.A., Tiwari G.R., Blednov Y.A., Mayfield R.D. and Harris R.A. (2019) Silencing synaptic MicroRNA-411 reduces voluntary alcohol consumption in mice. Addict. Biol. 24, 604–616 10.1111/adb.1262510.1111/adb.12625PMC619287829665166Huang C., Wang Y., Wu Z., Xu J., Zhou L., Wang D.et al. . (2021) miR-98-5p plays a critical role in depression and antidepressant effect of ketamine. Transl. Psychiatry 11, 454 10.1038/s41398-021-01588-010.1038/s41398-021-01588-0PMC841702934480014Uchida S., Hara K., Kobayashi A., Funato H., Hobara T., Otsuki K.et al. . (2010) Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J. Neurosci. 30, 15007–15018 10.1523/JNEUROSCI.1436-10.201010.1523/JNEUROSCI.1436-10.2010PMC663383921068306Maffioletti E., Bocchio-Chiavetto L., Perusi G., Carvalho Silva R., Sacco C., Bazzanella R.et al. . (2021) Inflammation-related microRNAs are involved in stressful life events exposure and in trauma-focused psychotherapy in treatment-resistant depressed patients. Eur. J. Psychotraumatol. 12, 1987655 10.1080/20008198.2021.198765510.1080/20008198.2021.1987655PMC877250435070159Honda M., Kuwano Y., Katsuura-Kamano S., Kamezaki Y., Fujita K., Akaike Y.et al. . (2013) Chronic academic stress increases a group of microRNAs in peripheral blood. PLoS ONE 8, e75960 10.1371/journal.pone.007596010.1371/journal.pone.0075960PMC379401224130753Sillivan S.E., Jones M.E., Jamieson S., Rumbaugh G. and Miller C.A. (2019) Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS ONE 14, e0209846 10.1371/journal.pone.020984610.1371/journal.pone.0209846PMC632820430629705Wan Y., Liu Y., Wang X., Wu J., Liu K., Zhou J.et al. . (2015) Identification of differential microRNAs in cerebrospinal fluid and serum of patients with major depressive disorder. PLoS ONE 10, e0121975 10.1371/journal.pone.012197510.1371/journal.pone.0121975PMC435738025763923Wan Y.-Q., Feng J.-G., Li M., Wang M.-Z., Liu L., Liu X.et al. . (2018) Prefrontal cortex miR-29b-3p plays a key role in the antidepressant-like effect of ketamine in rats. Exp. Mol. Med. 50, 1–14 10.1038/s12276-018-0164-410.1038/s12276-018-0164-4PMC620442930369596Rinaldi A., Vincenti S., De Vito F., Bozzoni I., Oliverio A., Presutti C.et al. . (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav. Brain Res. 208, 265–269 10.1016/j.bbr.2009.11.01210.1016/j.bbr.2009.11.01219913057Kye M.J., Neveu P., Lee Y.S., Zhou M., Steen J.A., Sahin M.et al. . (2011) NMDA mediated contextual conditioning changes miRNA expression. PLoS ONE 6, e24682 10.1371/journal.pone.002468210.1371/journal.pone.0024682PMC317144621931811Gorinski N., Bijata M., Prasad S., Wirth A., Abdel Galil D., Zeug A.et al. . (2019) Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat. Commun. 10, 3924 10.1038/s41467-019-11876-510.1038/s41467-019-11876-5PMC671842931477731Pearson-Leary J., Eacret D., Chen R., Takano H., Nicholas B. and Bhatnagar S. (2017) Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress. Transl. Psychiatry 7, e1160 10.1038/tp.2017.12210.1038/tp.2017.122PMC553764328654094Shen M., Song Z. and Wang J.H. (2019) microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice. Psychopharmacology (Berl.) 236, 2119–2142 10.1007/s00213-019-05209-z10.1007/s00213-019-05209-z30900007Martin C.G., Kim H., Yun S., Livingston W., Fetta J., Mysliwiec V.et al. . (2017) Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans. Psychiatry Res. 251, 261–265 10.1016/j.psychres.2017.01.08110.1016/j.psychres.2017.01.081PMC606510028222310Roy B., Dunbar M., Agrawal J., Allen L. and Dwivedi Y. (2020) Amygdala-based altered miRNome and epigenetic contribution of miR-128-3p in conferring susceptibility to depression-like behavior via Wnt signaling. Int. J. Neuropsychopharmacol. 23, 165–177 10.1093/ijnp/pyz07110.1093/ijnp/pyz071PMC717193232173733Lin Q., Wei W., Coelho C.M., Li X., Baker-Andresen D., Dudley K.et al. . (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat. Neurosci. 14, 1115–1117 10.1038/nn.289110.1038/nn.289121841775Smalheiser N.R., Lugli G., Rizavi H.S., Torvik V.I., Turecki G. and Dwivedi Y. (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PloS ONE 7, e33201 10.1371/journal.pone.003320110.1371/journal.pone.0033201PMC330285522427989Sun X., Song Z., Si Y. and Wang J.-H. (2018) microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience. Prog. Neuropsychopharmacol. Biol. Psychiatry 86, 150–165 10.1016/j.pnpbp.2018.05.02310.1016/j.pnpbp.2018.05.02329864451Yang J., Sun J., Lu Y., An T., Lu W. and Wang J.H. (2020) Revision to psychopharmacology mRNA and microRNA profiles are associated with stress susceptibility and resilience induced by psychological stress in the prefrontal cortex. Psychopharmacology (Berl.) 237, 3067–3093 10.1007/s00213-020-05593-x10.1007/s00213-020-05593-x32591938Homorogan C., Enatescu V.R., Nitusca D., Marcu A., Seclaman E. and Marian C. (2021) Distribution of microRNAs associated with major depressive disorder among blood compartments. J. Int. Med. Res. 49, 3000605211006633 10.1177/0300060521100663310.1177/03000605211006633PMC804058433827323Teppen T.L., Krishnan H.R., Zhang H., Sakharkar A.J. and Pandey S.C. (2016) The potential role of amygdaloid microRNA-494 in alcohol-induced anxiolysis. Biol. Psychiatry 80, 711–719 10.1016/j.biopsych.2015.10.02810.1016/j.biopsych.2015.10.028PMC488226726786313Belzeaux R., Bergon A., Jeanjean V., Loriod B., Formisano-Tréziny C., Verrier L.et al. . (2012) Responder and nonresponder patients exhibit different peripheral transcriptional signatures during major depressive episode. Transl. Psychiatry 2, e185 10.1038/tp.2012.11210.1038/tp.2012.112PMC356577323149449Balakathiresan N.S., Chandran R., Bhomia M., Jia M., Li H. and Maheshwari R.K. (2014) Serum and amygdala microRNA signatures of posttraumatic stress: fear correlation and biomarker potential. J. Psychiatr. Res. 57, 65–73 10.1016/j.jpsychires.2014.05.02010.1016/j.jpsychires.2014.05.02024998397Solich J., Kolasa M., Faron-Górecka A., Hajto J., Piechota M. and Dziedzicka-Wasylewska M. (2021) MicroRNA Let-7e in the mouse prefrontal cortex differentiates restraint-stress-resilient genotypes from susceptible genotype. Int. J. Mol. Sci. 22, 1–16 10.3390/ijms2217943910.3390/ijms22179439PMC843091934502349Maffioletti E., Cattaneo A., Rosso G., Maina G., Maj C., Gennarelli M.et al. . (2016) Peripheral whole blood microRNA alterations in major depression and bipolar disorder. J. Affect. Disord. 200, 250–258 10.1016/j.jad.2016.04.02110.1016/j.jad.2016.04.02127152760Maurel O.M., Torrisi S.A., Barbagallo C., Purrello M., Salomone S., Drago F.et al. . (2021) Dysregulation of miR-15a-5p, miR-497a-5p and miR-511-5p is associated with modulation of BDNF and FKBP5 in brain areas of PTSD-related susceptible and resilient mice. Int. J. Mol. Sci. 22, 10.3390/ijms2210515710.3390/ijms22105157PMC815300334068160Zhao C., Zhou B., Cao J., Zhang Y., Li W., Wang M.et al. . (2020) miR-187-3p participates in contextual fear memory formation through modulating SATB2 expression in the hippocampus. Neuroreport 31, 909–917 10.1097/WNR.000000000000148410.1097/WNR.000000000000148432568775Su J., Li P., Zhuang Q., Chen X., Zhang X., Li X.et al. . (2021) Identification of the similarities and differences of molecular networks associated with fear memory formation, extinction, and updating in the amygdala. Front. Mol. Neurosci. 14, 778170 10.3389/fnmol.2021.77817010.3389/fnmol.2021.778170PMC867563834924954McKibben L.A. and Dwivedi Y. (2021) Early life and adult stress promote sex dependent changes in hypothalamic miRNAs and environmental enrichment prevents stress-induced miRNA and gene expression changes in rats. BMC Genomics 22, 701 10.1186/s12864-021-08003-410.1186/s12864-021-08003-4PMC848002334583641McKibben L.A. and Dwivedi Y. (2021) Early-life stress induces genome-wide sex-dependent miRNA expression and correlation across limbic brain areas in rats. Epigenomics 13, 1031–1056 10.2217/epi-2021-003710.2217/epi-2021-0037PMC824458334008410Patrício P., Mateus-Pinheiro A., Irmler M., Alves N.D., Machado-Santos A.R., Morais M.et al. . (2015) Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus. Neuropsychopharmacology 40, 338–349 10.1038/npp.2014.17610.1038/npp.2014.176PMC444394625035085Gupta S., Kim S.Y., Artis S., Molfese D.L., Schumacher A., Sweatt J.D.et al. . (2010) Histone methylation regulates memory formation. J. Neurosci.:Off. J. Soc. Neurosci. 30, 3589–3599 10.1523/JNEUROSCI.3732-09.201010.1523/JNEUROSCI.3732-09.2010PMC285989820219993Peixoto L. and Abel T. (2013) The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38, 62–76 10.1038/npp.2012.8610.1038/npp.2012.86PMC352199422669172Ookubo M., Kanai H., Aoki H. and Yamada N. (2013) Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: Brain region specific changes. J. Psychiatr. Res. 47, 1204–1214 10.1016/j.jpsychires.2013.05.02810.1016/j.jpsychires.2013.05.02823777937Manzanares J., Cabañero D., Puente N., García-Gutiérrez M.S., Grandes P. and Maldonado R. (2018) Role of the endocannabinoid system in drug addiction. Biochem. Pharmacol. 157, 108–121 10.1016/j.bcp.2018.09.01310.1016/j.bcp.2018.09.01330217570Wolfe S.A., Vozella V. and Roberto M. (2022) The synaptic interactions of alcohol and the endogenous cannabinoid system. Alcohol Res.: Curr. Rev. 42, 03 10.35946/arcr.v42.1.0310.35946/arcr.v42.1.03PMC884341335223337Gobira P.H., Joca S.R. and Moreira F.A. (2022) Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses. Acta Neuropsychiatrica 1–11 10.1017/neu.2022.2310.1017/neu.2022.2335993329Mantsch J.R., Baker D.A., Funk D., Le A.D. and Shaham Y. (2016) Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology 41, 335–356 10.1038/npp.2015.14210.1038/npp.2015.142PMC467711725976297Bardo M.T., Hammerslag L.R. and Malone S.G. (2021) Effect of early life social adversity on drug abuse vulnerability: focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 191, 108567 10.1016/j.neuropharm.2021.10856710.1016/j.neuropharm.2021.108567PMC821736933862030Tung L.W., Lu G.L., Lee Y.H., Yu L., Lee H.J., Leishman E.et al. . (2016) Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat. Commun. 7, 12199 10.1038/ncomms1219910.1038/ncomms12199PMC496184227448020McReynolds J.R., Doncheck E.M., Li Y., Vranjkovic O., Graf E.N., Ogasawara D.et al. . (2018) Stress promotes drug seeking through glucocorticoid-dependent endocannabinoid mobilization in the prelimbic cortex. Biol. Psychiatry 84, 85–94 10.1016/j.biopsych.2017.09.02410.1016/j.biopsych.2017.09.024PMC588936729100630Sinha R (2008) Chronic Stress, Drug Use, and Vulnerability to Addiction. Annals of the New York Academy of Sciences 1141, 1105–130 10.1196/annals.1441.03010.1196/annals.1441.030PMC273200418991954De Sa Nogueira D., Bourdy R., Alcala-Vida R., Filliol D., Andry V., Goumon Y.et al. . (2022) Hippocampal cannabinoid 1 receptors are modulated following cocaine self-administration in male rats. Mol. Neurobiol. 59, 1896–1911 10.1007/s12035-022-02722-910.1007/s12035-022-02722-935032317Subbanna S., Nagre N.N., Umapathy N.S., Pace B.S. and Basavarajappa B.S. (2014) Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int. J. Neuropsychopharmacol. 18, 1–15 10.1093/ijnp/pyu02810.1093/ijnp/pyu028PMC437653825609594Nagre N.N., Subbanna S., Shivakumar M., Psychoyos D. and Basavarajappa B.S. (2015) CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation. J. Neurochem. 132, 429–442 10.1111/jnc.1300610.1111/jnc.13006PMC435176425487288Shivakumar M., Subbanna S., Joshi V. and Basavarajappa B.S. (2020) Postnatal ethanol exposure activates HDAC-mediated histone deacetylation, impairs synaptic plasticity gene expression and behavior in mice. Int. J. Neuropsychopharmacol. 23, 324–338 10.1093/ijnp/pyaa01710.1093/ijnp/pyaa017PMC725163532170298Subbanna S., Nagre N.N., Shivakumar M., Joshi V., Psychoyos D., Kutlar A.et al. . (2018) CB1R-mediated activation of caspase-3 causes epigenetic and neurobehavioral abnormalities in postnatal ethanol-exposed mice. Front Mol. Neurosci. 11, 45 10.3389/fnmol.2018.0004510.3389/fnmol.2018.00045PMC582622229515368Stringer R.L., Laufer B.I., Kleiber M.L. and Singh S.M. (2013) Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders. Clin. Epigenetics 5, 14 10.1186/1868-7083-5-1410.1186/1868-7083-5-14PMC375109823915435Szutorisz H. and Hurd Y.L. (2018) High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 10.1016/j.neubiorev.2017.05.01110.1016/j.neubiorev.2017.05.011PMC568223428506926Tomasiewicz H.C., Jacobs M.M., Wilkinson M.B., Wilson S.P., Nestler E.J. and Hurd Y.L. (2012) Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol. Psychiatry 72, 803–810 10.1016/j.biopsych.2012.04.02610.1016/j.biopsych.2012.04.026PMC344055122683090Prini P., Penna F., Sciuccati E., Alberio T. and Rubino T. (2017) Chronic Δ8-THC exposure differently affects histone modifications in the adolescent and adult rat brain. Int. J. Mol. Sci. 18, 10.3390/ijms1810209410.3390/ijms18102094PMC566677628976920Prini P., Rusconi F., Zamberletti E., Gabaglio M., Penna F., Fasano M.et al. . (2018) Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J. Psychiatry Neurosci.:JPN 43, 87–101 10.1503/jpn.17008210.1503/jpn.170082PMC583788929481316Watson C.T., Szutorisz H., Garg P., Martin Q., Landry J.A., Sharp A.J.et al. . (2015) Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40, 2993–3005 10.1038/npp.2015.15510.1038/npp.2015.155PMC486463426044905Levin E.D., Hawkey A.B., Hall B.J., Cauley M., Slade S., Yazdani E.et al. . (2019) Paternal THC exposure in rats causes long-lasting neurobehavioral effects in the offspring. Neurotoxicol. Teratol. 74, 106806 10.1016/j.ntt.2019.04.00310.1016/j.ntt.2019.04.00331028824Murphy S.K., Itchon-Ramos N., Visco Z., Huang Z., Grenier C., Schrott R.et al. . (2018) Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 13, 1208–1221 10.1080/15592294.2018.155452110.1080/15592294.2018.1554521PMC698679230521419Schrott R., Rajavel M., Acharya K., Huang Z., Acharya C., Hawkey A.et al. . (2020) Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. Sci. Rep. 10, 16022 10.1038/s41598-020-72783-010.1038/s41598-020-72783-0PMC752566132994467Schrott R., Greeson K.W., King D., Symosko Crow K.M., Easley C.At. and Murphy S.K. (2022) Cannabis alters DNA methylation at maternally imprinted and autism candidate genes in spermatogenic cells. Systems Biol. Reproduct. Med. 68, 357–369 10.1080/19396368.2022.207329210.1080/19396368.2022.2073292PMC1003233135687495D'Addario C., Di Francesco A., Pucci M., Finazzi Agrò A. and Maccarrone M. (2013) Epigenetic mechanisms and endocannabinoid signalling. FEBS J. 280, 1905–1917 10.1111/febs.1212510.1111/febs.1212523305292Rusconi F., Rubino T. and Battaglioli E. (2020) Endocannabinoid-epigenetic cross-talk: a bridge toward stress coping. Int. J. Mol. Sci. 21, 1–13 10.3390/ijms2117625210.3390/ijms21176252PMC750401532872402