Cancer-associated fibroblasts drive CXCL13 production in activated T cells via TGF-beta.

Front Immunol

Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.

Published: August 2023

Introduction: Tumour-reactive T cells producing the B-cell attractant chemokine CXCL13, in solid tumours, promote development of tertiary lymphoid structures (TLS) and are associated with improved prognosis and responsiveness to checkpoint immunotherapy. Cancer associated fibroblasts are the dominant stromal cell type in non-small cell lung cancer (NSCLC) where they co-localise with T cells and can influence T cell activation and exhaustion. We questioned whether CAF directly promote CXCL13-production during T cell activation.

Methods: We characterised surface markers, cytokine production and transcription factor expression in CXCL13-producing T cells in NSCLC tumours and paired non-cancerous lung samples using flow cytometry. We then assessed the influence of human NSCLC-derived primary CAF lines on T cells from healthy donors and NSCLC patients during activation measuring CXCL13 production and expression of cell-surface markers and transcription factors by flow cytometry.

Results: CAFs significantly increased the production of CXCL13 by both CD4 and CD8 T cells. CAF-induced CXCL13-producing cells lacked expression of CXCR5 and BCL6 and displayed a T peripheral helper cell phenotype. Furthermore, we demonstrate CXCL13 production by T cells is induced by TGF-β and limited by IL-2. CAF provide TGF-β during T cell activation and reduce availability of IL-2 both directly (by reducing the capacity for IL-2 production) and indirectly, by expanding a population of activated Treg. Inhibition of TGF-β signalling prevented both CAF-driven upregulation of CXCL13 and Treg expansion.

Discussion: Promoting CXCL13 production represents a newly described immune-regulatory function of CAF with the potential to shape the immune infiltrate of the tumour microenvironment both by altering the effector-function of tumour infiltrating T-cells and their capacity to attract B cells and promote TLS formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373066PMC
http://dx.doi.org/10.3389/fimmu.2023.1221532DOI Listing

Publication Analysis

Top Keywords

cxcl13 production
16
cells
9
cell activation
8
cxcl13-producing cells
8
cxcl13
7
production
7
cell
6
cancer-associated fibroblasts
4
fibroblasts drive
4
drive cxcl13
4

Similar Publications

Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe liver inflammation and fibrosis due to an imbalanced immune response caused by enhanced bacterial components. The progression of MASH is closely linked to increased permeability of intestinal mucosal barrier facilitating enter of bacterial components into hepatic portal venous system. B cells are important immune cells for adaptive responses and enhance hepatic inflammation through cytokine production and T cell activation.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO NPs) can induce the cell cycle arrest in spermatogonia, and the JAK2/STAT3 signaling pathway plays a pivotal role in cell cycle progression, but the specific upstream regulatory mechanisms are not completely clarified. The purpose of this study was to investigate whether CXCL13 regulated the JAK2/STAT3 signaling pathway to participate in cell cycle arrest after mouse spermatogonia cell line (GC-1) exposure to TiO NPs. The GC-1 cells were treated with TiO NPs at different concentrations (0, 10, 20, 30, and 40 μg/mL) for 24 h to detect cell viability, cell cycle distribution, CXCL13 protein, JAK2/STAT3 pathway-related proteins, and cell cycle-related proteins.

View Article and Find Full Text PDF

Disseminated cancer cells in the peritoneal fluid often colonize omental fat-associated lymphoid clusters but the mechanisms are unclear. Here, we identify that innate-like B cells accumulate in the omentum of mice and women with early-stage ovarian cancer concomitantly with the extrusion of chromatin fibers by neutrophils called neutrophil extracellular traps (NETs). Studies using genetically modified NET-deficient mice, pharmacologic inhibition of NETs, and adoptive B cell transfer show that NETs induce expression of the chemoattractant CXCL13 in the pre-metastatic omentum, stimulating recruitment of peritoneal innate-like B cells that in turn promote expansion of regulatory T cells and omental metastasis through producing interleukin (IL)-10.

View Article and Find Full Text PDF
Article Synopsis
  • Elevated levels of activated complement proteins in cerebrospinal fluid (CSF) are linked to increased severity of multiple sclerosis (MS) and correlate with brain imaging and disease biomarkers.
  • A study involving 239 patients analyzed various complement components and liquid biomarkers in CSF, finding specific proteins like C4a, Ba, and C3a strongly associated with accelerated brain atrophy and lesion formation.
  • Results indicate that higher levels of these complement proteins are predictive of greater brain volume loss and increased development of lesions, suggesting their potential role as biomarkers for disease progression in MS.
View Article and Find Full Text PDF

Tolerance to foreign molecules is primarily induced through three pathways: anergy, active suppression, and clonal deletion. The immaturity of gut functions, including digestion and barrier protection against foreign molecules during early infancy, is closely linked to the induction of tolerance. A significant number of undigested peptides can pass through leaky gut walls during this period, making it an opportune time to introduce active suppression and clonal deletion in the intestine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!