Legumes are important clade of commercially important family Leguminosae that mainly include medicinal, flowering and edible plants. Although the genomic sequence of legumes is accessible, only the limited number of effective simple sequence repeat markers has been identified by prior research. Additional polymorphic simple sequence repeats marker discovery will aid in the genetics and breeding of legumes. In this study, 13 complete genome sequences were screened for the identification of chromosome-wise simple sequence repeats (SSRs) and 1,866,861 SSRs were identified. Based on the study, it was observed that the number of SSRs in non-coding region was more as compared to coding region and frequency of mononucleotides was highest followed by di-nucleotides while penta- and hexa-nucleotide repeats were least frequent one. The identified genome-wide SSRs and newly developed SSR markers, primers and their mapping will provide a powerful means for genetic researches across Leguminosae plants, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping and marker-assisted selection for breeding as well as comparative genomic analysis studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382446 | PMC |
http://dx.doi.org/10.1007/s13205-023-03706-9 | DOI Listing |
Background: Neonatal mice are frequently used to model diseases that affect human infants. Microbial community composition has been shown to impact disease progression in these models. Despite this, the maturation of the early-life murine microbiome has not been well-characterized.
View Article and Find Full Text PDFThe competition for resources is a defining feature of microbial communities. In many contexts, from soils to host-associated communities, highly diverse microbes are organized into metabolic groups or guilds with similar resource preferences. The resource preferences of individual taxa that give rise to these guilds are critical for understanding fluxes of resources through the community and the structure of diversity in the system.
View Article and Find Full Text PDFACS Omega
January 2025
School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Accurate drug-target binding affinity (DTA) prediction is crucial in drug discovery. Recently, deep learning methods for DTA prediction have made significant progress. However, there are still two challenges: (1) recent models always ignore the correlations in drug and target data in the drug/target representation process and (2) the interaction learning of drug-target pairs always is by simple concatenation, which is insufficient to explore their fusion.
View Article and Find Full Text PDFPeerJ
January 2025
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.
Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.
Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!